| |||||||
ShanghaiTech University Knowledge Management System
Quantification of tissue stiffness with magnetic resonance elastography and finite difference time domain (FDTD) simulation-based spatiotemporal neural network | |
2025-05-01 | |
发表期刊 | MAGNETIC RESONANCE IMAGING (IF:2.1[JCR-2023],2.3[5-Year]) |
ISSN | 0730-725X |
EISSN | 1873-5894 |
卷号 | 118 |
发表状态 | 已发表 |
DOI | 10.1016/j.mri.2025.110353 |
摘要 | Quantification of tissue stiffness with magnetic resonance elastography (MRE) is an inverse problem that is sensitive to noise. Conventional methods for the purpose include direct inversion (DI) and local frequency estimation (LFE). In this study, we propose to train a spatiotemporal neural network using MRE data simulated by the Finite Difference Time Domain method (FDTDNet), and to use the trained network to estimate tissue stiffness from MRE data. The proposed method showed significantly better robustness to noise than DI or LFE. For simulated data with signal-to-noise ratio (SNR) of 15 dB, tissue stiffness by FDTDNet had mean absolute error of 0.41 kPa or 7 %, 77.8 % and 84.4 % lower than those by DI and LFE respectively (P < 0.0001). For a homogeneous phantom with driver power decreasing from 30 % to 5 %, FDTDNet, DI and LFE provided stiffness estimates with deviation of 6.9 % (0.21 kPa), 9.2 % (0.28 kPa) and 45.8 % (1.20 kPa) of the respective stiffness level at driver power of 30 %. Detectability of small inclusions in estimated stiffness maps is also critical. For simulated data with inclusions of radius of 0.31 cm, FDTDNet achieved contrast-to-noise ratio (CNR) of 4.20, 6900 % and 347 % higher than DI and LFE respectively (P < 0.0001), and structural similarity index (SSIM) of 0.61, 27 % and 177 % higher than DI and LFE respectively (P < 0.0001). For phantom with inclusion of radius 0.39 cm, CNR of FDTDNet was 2.98, 90 % and 80 % higher than DI and LFE respectively (P < 0.0001) and SSIM was 0.80, 89% and 28 % higher than DI and LFE respectively (P < 0.0001). We also demonstrated the feasibility of FDTDNet in MRE data acquired from calf muscles of human subjects. In conclusion, by using a spatiotemporal neural network trained with simulated data, FDTDNet estimated tissue stiffness from MRE with superior noise robustness and detectability of focal inclusions, therefore showed potential in precisely quantifying MRE of human subjects. |
关键词 | Magnetic resonance elastography Tissue stiffness Deep learning Finite difference time domain method |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[82171924] |
WOS研究方向 | Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001425937400001 |
出版者 | ELSEVIER SCIENCE INC |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493506 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 |
通讯作者 | Zhang, Jeff L. |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.Shanghai United Imaging Healthcare Co Ltd, Cent Res Inst, Shanghai, Peoples R China 3.Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Radiol, Sch Med, Shanghai, Peoples R China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhang, Jiaying,Mu, Xin,Lin, Xi,et al. Quantification of tissue stiffness with magnetic resonance elastography and finite difference time domain (FDTD) simulation-based spatiotemporal neural network[J]. MAGNETIC RESONANCE IMAGING,2025,118. |
APA | Zhang, Jiaying.,Mu, Xin.,Lin, Xi.,Kong, Xiangwei.,Li, Yanbin.,...&Zhang, Jeff L..(2025).Quantification of tissue stiffness with magnetic resonance elastography and finite difference time domain (FDTD) simulation-based spatiotemporal neural network.MAGNETIC RESONANCE IMAGING,118. |
MLA | Zhang, Jiaying,et al."Quantification of tissue stiffness with magnetic resonance elastography and finite difference time domain (FDTD) simulation-based spatiotemporal neural network".MAGNETIC RESONANCE IMAGING 118(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Jiaying]的文章 |
[Mu, Xin]的文章 |
[Lin, Xi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Jiaying]的文章 |
[Mu, Xin]的文章 |
[Lin, Xi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Jiaying]的文章 |
[Mu, Xin]的文章 |
[Lin, Xi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。