Deep Convolutional Neural Network Enhanced Non-uniform Fast Fourier Transform for Undersampled MRI Reconstruction
2025-02-01
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION (IF:11.6[JCR-2023],14.5[5-Year])
ISSN0920-5691
EISSN1573-1405
发表状态已发表
DOI10.1007/s11263-025-02378-7
摘要

NUFFT is widely used in MRI reconstruction, offering a balance of efficiency and accuracy. However, it struggles with uneven or sparse sampling, leading to unacceptable under sampling errors. To address this, we introduced DCNUFFT, a novel method that enhances NUFFT with deep convolutional neural network. The interpolation kernel and density compensation in inverse NUFFT were replaced with trainable neural network layers and incorporated a new global correlation prior in the spatial-frequency domain to better recover high-frequency information, enhancing reconstruction quality. DCNUFFT outperformed inverse NUFFT, iterative methods, and other deep learning approaches in terms of normalized root mean square error (NRMSE) and structural similarity index (SSIM) across various anatomies and sampling trajectories. Importantly, DCNUFFT also excelled in reconstructing under sampled PET and CT data, showing strong generalization capabilities. In subjective evaluations by radiologists, DCNUFFT scored highest in visual quality (VQ) and lesion distinguishing ability (LD), highlighting its clinical potential.

关键词Deep convolution neural network Non-uniform Fast Fourier transform Global correlation Adaptive interpolation Undersampled MRI reconstruction
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Science and Technology Planning Program of Beijing Municipal Science & Technology Commission and Administrative Commission of Zhongguancun Science Park, China[Z231100004823012] ; Beijing Natural Science Foundation[
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001427780700001
出版者SPRINGER
EI入藏号20250817930540
EI主题词Mean square error
EI分类号101.1 Biomedical Engineering ; 1101 Artificial Intelligence ; 1101.2.1 Deep Learning ; 1103.3 Data Communication, Equipment and Techniques ; 1201 Mathematics ; 1201.3 Mathematical Transformations ; 1201.5 Computational Mathematics ; 1202.2 Mathematical Statistics ; 746 Imaging Techniques
原始文献类型Article in Press
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493502
专题生物医学工程学院
生物医学工程学院_PI研究组_齐海坤组
通讯作者Chen, Huijun
作者单位
1.Tsinghua Univ, Ctr Biomed Imaging Res CBIR, Sch Med, Beijing, Peoples R China
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
3.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China
4.Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
5.Harvard Med Sch, Dept Radiol, Boston, MA USA
6.Capital Med Univ, Beijing Tiantan Hosp, Tiantan Neuroimaging Ctr Excellence, China Natl Clin Res Ctr Neurol Dis, Beijing, Peoples R China
7.Jinan Univ, Guangdong Hongkong Macau Inst CNS Regenerat, Key Lab CNS Regenerat, Minist Educ, Guangzhou, Peoples R China
推荐引用方式
GB/T 7714
Li, Yuze,Qi, Haikun,Hu, Zhangxuan,et al. Deep Convolutional Neural Network Enhanced Non-uniform Fast Fourier Transform for Undersampled MRI Reconstruction[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2025.
APA Li, Yuze.,Qi, Haikun.,Hu, Zhangxuan.,Sun, Haozhong.,Li, Guangqi.,...&Chen, Huijun.(2025).Deep Convolutional Neural Network Enhanced Non-uniform Fast Fourier Transform for Undersampled MRI Reconstruction.INTERNATIONAL JOURNAL OF COMPUTER VISION.
MLA Li, Yuze,et al."Deep Convolutional Neural Network Enhanced Non-uniform Fast Fourier Transform for Undersampled MRI Reconstruction".INTERNATIONAL JOURNAL OF COMPUTER VISION (2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Yuze]的文章
[Qi, Haikun]的文章
[Hu, Zhangxuan]的文章
百度学术
百度学术中相似的文章
[Li, Yuze]的文章
[Qi, Haikun]的文章
[Hu, Zhangxuan]的文章
必应学术
必应学术中相似的文章
[Li, Yuze]的文章
[Qi, Haikun]的文章
[Hu, Zhangxuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。