ShanghaiTech University Knowledge Management System
Deep Convolutional Neural Network Enhanced Non-uniform Fast Fourier Transform for Undersampled MRI Reconstruction | |
2025-02-01 | |
发表期刊 | INTERNATIONAL JOURNAL OF COMPUTER VISION (IF:11.6[JCR-2023],14.5[5-Year]) |
ISSN | 0920-5691 |
EISSN | 1573-1405 |
发表状态 | 已发表 |
DOI | 10.1007/s11263-025-02378-7 |
摘要 | NUFFT is widely used in MRI reconstruction, offering a balance of efficiency and accuracy. However, it struggles with uneven or sparse sampling, leading to unacceptable under sampling errors. To address this, we introduced DCNUFFT, a novel method that enhances NUFFT with deep convolutional neural network. The interpolation kernel and density compensation in inverse NUFFT were replaced with trainable neural network layers and incorporated a new global correlation prior in the spatial-frequency domain to better recover high-frequency information, enhancing reconstruction quality. DCNUFFT outperformed inverse NUFFT, iterative methods, and other deep learning approaches in terms of normalized root mean square error (NRMSE) and structural similarity index (SSIM) across various anatomies and sampling trajectories. Importantly, DCNUFFT also excelled in reconstructing under sampled PET and CT data, showing strong generalization capabilities. In subjective evaluations by radiologists, DCNUFFT scored highest in visual quality (VQ) and lesion distinguishing ability (LD), highlighting its clinical potential. |
关键词 | Deep convolution neural network Non-uniform Fast Fourier transform Global correlation Adaptive interpolation Undersampled MRI reconstruction |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Science and Technology Planning Program of Beijing Municipal Science & Technology Commission and Administrative Commission of Zhongguancun Science Park, China[Z231100004823012] ; Beijing Natural Science Foundation[ |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:001427780700001 |
出版者 | SPRINGER |
EI入藏号 | 20250817930540 |
EI主题词 | Mean square error |
EI分类号 | 101.1 Biomedical Engineering ; 1101 Artificial Intelligence ; 1101.2.1 Deep Learning ; 1103.3 Data Communication, Equipment and Techniques ; 1201 Mathematics ; 1201.3 Mathematical Transformations ; 1201.5 Computational Mathematics ; 1202.2 Mathematical Statistics ; 746 Imaging Techniques |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493502 |
专题 | 生物医学工程学院 生物医学工程学院_PI研究组_齐海坤组 |
通讯作者 | Chen, Huijun |
作者单位 | 1.Tsinghua Univ, Ctr Biomed Imaging Res CBIR, Sch Med, Beijing, Peoples R China 2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 3.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China 4.Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA 5.Harvard Med Sch, Dept Radiol, Boston, MA USA 6.Capital Med Univ, Beijing Tiantan Hosp, Tiantan Neuroimaging Ctr Excellence, China Natl Clin Res Ctr Neurol Dis, Beijing, Peoples R China 7.Jinan Univ, Guangdong Hongkong Macau Inst CNS Regenerat, Key Lab CNS Regenerat, Minist Educ, Guangzhou, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Yuze,Qi, Haikun,Hu, Zhangxuan,et al. Deep Convolutional Neural Network Enhanced Non-uniform Fast Fourier Transform for Undersampled MRI Reconstruction[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2025. |
APA | Li, Yuze.,Qi, Haikun.,Hu, Zhangxuan.,Sun, Haozhong.,Li, Guangqi.,...&Chen, Huijun.(2025).Deep Convolutional Neural Network Enhanced Non-uniform Fast Fourier Transform for Undersampled MRI Reconstruction.INTERNATIONAL JOURNAL OF COMPUTER VISION. |
MLA | Li, Yuze,et al."Deep Convolutional Neural Network Enhanced Non-uniform Fast Fourier Transform for Undersampled MRI Reconstruction".INTERNATIONAL JOURNAL OF COMPUTER VISION (2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。