| |||||||
ShanghaiTech University Knowledge Management System
Task-aware Attentional Dynamic Alignment for Few-Shot Compressed Video Classification | |
2025 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (IF:8.3[JCR-2023],7.1[5-Year]) |
ISSN | 1558-2205 |
EISSN | 1558-2205 |
卷号 | PP期号:99 |
发表状态 | 已发表 |
DOI | 10.1109/TCSVT.2025.3546714 |
摘要 | We present a novel Task-aware Attentional Dynamic Alignment (TADA) framework for visual-based few-shot video classification (FSVC) that addresses two key challenges in this field: efficiency and nuanced spatio-temporal reasoning. Existing methods are often hindered by computationally expensive video decoding processes and neglect the temporal order of videos. In contrast, our method harnesses compressed domain data to extract rich spatio-temporal cues at a fraction of the cost of traditional video processing methods. Specifically, we propose an embedding module to extract informative features from compressed domain data while minimizing computational overheads. Furthermore, to exploit the temporal order of frames, we develop a prototypical ADA module to align and classify videos with an explicit temporal order constraint. Our framework also incorporates a contextual mixer to enrich video embeddings with task-specific context. Extensive experiments on multiple datasets demonstrate that TADA achieves state-of-the-art performance and outperforms existing methods in accuracy and efficiency. |
关键词 | Embeddings Footage counters Gluing Image compression Video recording Compressed domain Compressed video Dynamic alignment Embeddings Few-shot learning Novel task Shot video classifications Task-aware Temporal ordering Video classification |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20251018005888 |
EI主题词 | Spatio-temporal data |
EI分类号 | 1101 Artificial Intelligence ; 1106.3.1 Image Processing ; 1106.4 Database Systems ; 210 Adhesive Materials ; 214 Materials Science ; 716.4 Television Systems and Equipment ; 742.2 Photographic and Video Equipment |
原始文献类型 | Article in Press |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493495 |
专题 | 信息科学与技术学院 |
作者单位 | 1.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, China 2.School of Artificial Intelligence, University of Chinese Academy of Sciences, China 3.PeopleAI, Inc, China 4.School of Information Science and Technology, ShanghaiTech University, China 5.Birkbeck College, School of Computer Science and Mathematics, University of London, London, U.K. |
推荐引用方式 GB/T 7714 | Wenyang Luo,Yufan Liu,Bing Li,et al. Task-aware Attentional Dynamic Alignment for Few-Shot Compressed Video Classification[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2025,PP(99). |
APA | Wenyang Luo,Yufan Liu,Bing Li,Weiming Hu,&Stephen Maybank.(2025).Task-aware Attentional Dynamic Alignment for Few-Shot Compressed Video Classification.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,PP(99). |
MLA | Wenyang Luo,et al."Task-aware Attentional Dynamic Alignment for Few-Shot Compressed Video Classification".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY PP.99(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wenyang Luo]的文章 |
[Yufan Liu]的文章 |
[Bing Li]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wenyang Luo]的文章 |
[Yufan Liu]的文章 |
[Bing Li]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wenyang Luo]的文章 |
[Yufan Liu]的文章 |
[Bing Li]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。