消息
×
loading..
Task-aware Attentional Dynamic Alignment for Few-Shot Compressed Video Classification
2025
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (IF:8.3[JCR-2023],7.1[5-Year])
ISSN1558-2205
EISSN1558-2205
卷号PP期号:99
发表状态已发表
DOI10.1109/TCSVT.2025.3546714
摘要

We present a novel Task-aware Attentional Dynamic Alignment (TADA) framework for visual-based few-shot video classification (FSVC) that addresses two key challenges in this field: efficiency and nuanced spatio-temporal reasoning. Existing methods are often hindered by computationally expensive video decoding processes and neglect the temporal order of videos. In contrast, our method harnesses compressed domain data to extract rich spatio-temporal cues at a fraction of the cost of traditional video processing methods. Specifically, we propose an embedding module to extract informative features from compressed domain data while minimizing computational overheads. Furthermore, to exploit the temporal order of frames, we develop a prototypical ADA module to align and classify videos with an explicit temporal order constraint. Our framework also incorporates a contextual mixer to enrich video embeddings with task-specific context. Extensive experiments on multiple datasets demonstrate that TADA achieves state-of-the-art performance and outperforms existing methods in accuracy and efficiency.

关键词Embeddings Footage counters Gluing Image compression Video recording Compressed domain Compressed video Dynamic alignment Embeddings Few-shot learning Novel task Shot video classifications Task-aware Temporal ordering Video classification
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20251018005888
EI主题词Spatio-temporal data
EI分类号1101 Artificial Intelligence ; 1106.3.1 Image Processing ; 1106.4 Database Systems ; 210 Adhesive Materials ; 214 Materials Science ; 716.4 Television Systems and Equipment ; 742.2 Photographic and Video Equipment
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493495
专题信息科学与技术学院
作者单位
1.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, China
2.School of Artificial Intelligence, University of Chinese Academy of Sciences, China
3.PeopleAI, Inc, China
4.School of Information Science and Technology, ShanghaiTech University, China
5.Birkbeck College, School of Computer Science and Mathematics, University of London, London, U.K.
推荐引用方式
GB/T 7714
Wenyang Luo,Yufan Liu,Bing Li,et al. Task-aware Attentional Dynamic Alignment for Few-Shot Compressed Video Classification[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2025,PP(99).
APA Wenyang Luo,Yufan Liu,Bing Li,Weiming Hu,&Stephen Maybank.(2025).Task-aware Attentional Dynamic Alignment for Few-Shot Compressed Video Classification.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,PP(99).
MLA Wenyang Luo,et al."Task-aware Attentional Dynamic Alignment for Few-Shot Compressed Video Classification".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY PP.99(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wenyang Luo]的文章
[Yufan Liu]的文章
[Bing Li]的文章
百度学术
百度学术中相似的文章
[Wenyang Luo]的文章
[Yufan Liu]的文章
[Bing Li]的文章
必应学术
必应学术中相似的文章
[Wenyang Luo]的文章
[Yufan Liu]的文章
[Bing Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。