Evaluating Image Caption via Cycle-consistent Text-to-Image Generation
2025-01-07
摘要

Evaluating image captions typically relies on reference captions, which are costly to obtain and exhibit significant diversity and subjectivity. While reference-free evaluation metrics have been proposed, most focus on cross-modal evaluation between captions and images. Recent research has revealed that the modality gap generally exists in the representation of contrastive learning-based multi-modal systems, undermining the reliability of cross-modality metrics like CLIPScore. In this paper, we propose CAMScore, a cyclic reference-free automatic evaluation metric for image captioning models. To circumvent the aforementioned modality gap, CAMScore utilizes a text-to-image model to generate images from captions and subsequently evaluates these generated images against the original images. Furthermore, to provide fine-grained information for a more comprehensive evaluation, we design a three-level evaluation framework for CAMScore that encompasses pixel-level, semantic-level, and objective-level perspectives. Extensive experiment results across multiple benchmark datasets show that CAMScore achieves a superior correlation with human judgments compared to existing reference-based and reference-free metrics, demonstrating the effectiveness of the framework.

DOIarXiv:2501.03567
相关网址查看原文
出处Arxiv
WOS记录号PPRN:120340319
WOS类目Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/490278
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_石野组
通讯作者Shi, Ye
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Alibaba Grp, AI Business, Hangzhou, Peoples R China
推荐引用方式
GB/T 7714
Cui, Tianyu,Bai, Jinbin,Wang, Guohua,et al. Evaluating Image Caption via Cycle-consistent Text-to-Image Generation. 2025.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cui, Tianyu]的文章
[Bai, Jinbin]的文章
[Wang, Guohua]的文章
百度学术
百度学术中相似的文章
[Cui, Tianyu]的文章
[Bai, Jinbin]的文章
[Wang, Guohua]的文章
必应学术
必应学术中相似的文章
[Cui, Tianyu]的文章
[Bai, Jinbin]的文章
[Wang, Guohua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。