Mechanism Study on the Interfacial Stability of a Lithium Garnet-Type Oxide Electrolyte against Cathode Materials
Zhang, Nian1; Long, Xinghui1,5; Wang, Zhi2; Yu, Pengfei1; Han, Fudong3; Fu, Jiamin1,5; Ren, GuoXi1,5; Wu, Yanru1,5; Zheng, Shun1,5; Huang, Wencheng1,5
2018-11
发表期刊ACS APPLIED ENERGY MATERIALS
ISSN2574-0962
卷号1期号:11页码:5968-5976
发表状态已发表
DOI10.1021/acsaem.8b01035
摘要All-solid-state lithium-ion battery is considered to be one of the most promising next-generation battery technologies. Understanding the interfacial evolution of a solid electrolyte and a cathode electrode during mixing and sintering is of great importance and can provide guidance to avoid forming unwanted compounds and decrease the interfacial resistance. In this work, chemical compatibilities are investigated between a Ta-doped Li7La3Zr2O12 (LLZO) solid electrolyte and major commercial metal-oxide cathodes LiCoO2 (LCO) and Li(NiCoMn)(1/3)O-2 (NCM) through ball-milling and cosintering processes. As revealed by X-ray absorption spectroscopy and transmission electron microscopy, LLZO spontaneously covers the majority of the large LCO and NCM particles with a thickness of similar to 100 nm after ball milling. The thickness of LLZO layer on these cathodes decreases to about 10 nm after cosintering at 873 K, and an interfacial layer of approximately 3 nm is observed for NCM/LLZO. LCO shows a higher thermal stability than NCM. Density functional theory (DFT)-based simulations and electrochemical measurements suggest Ni-La and Ni-Li exchange could happen at the NCM/LLZO interface and Li can diffuse from the interface into NCM to occupy the Ni vacancy at high temperature. The Li depletion layer after diffusion at the interface induces the decomposition of LLZO and the formation of La2Zr2O7 and LaNiO3 interfacial layer.
关键词Garnet-type oxide electrolyte Solid electrolyte Thermal stability Co-sintering Interface reaction
收录类别ESCI ; SCIE ; EI ; SCI
语种英语
资助项目National Natural Science Foundation of China[21473235] ; National Natural Science Foundation of China[11227902] ; National Natural Science Foundation of China[U1632269]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:000458706700024
出版者AMER CHEMICAL SOC
WOS关键词SOLID-ELECTROLYTE ; ION BATTERY ; ELECTROCHEMICAL PERFORMANCE ; ARGYRODITE LI6PS5CL ; LICOO2 ; LI7LA3ZR2O12 ; 1ST-PRINCIPLES ; TEMPERATURE ; CHALLENGES ; MORPHOLOGY
原始文献类型Article
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/49013
专题物质科学与技术学院_特聘教授组_刘啸嵩组
通讯作者Liu, Xiaosong
作者单位1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Ctr Excellence Superconducting Elect, Shanghai 200050, Peoples R China
2.Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
3.Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
4.Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
7.Tianmu Lake Inst Adv Energy Storage Technol, Liyang City 213300, Jiangsu, Peoples R China
通讯作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Nian,Long, Xinghui,Wang, Zhi,et al. Mechanism Study on the Interfacial Stability of a Lithium Garnet-Type Oxide Electrolyte against Cathode Materials[J]. ACS APPLIED ENERGY MATERIALS,2018,1(11):5968-5976.
APA Zhang, Nian.,Long, Xinghui.,Wang, Zhi.,Yu, Pengfei.,Han, Fudong.,...&Liu, Xiaosong.(2018).Mechanism Study on the Interfacial Stability of a Lithium Garnet-Type Oxide Electrolyte against Cathode Materials.ACS APPLIED ENERGY MATERIALS,1(11),5968-5976.
MLA Zhang, Nian,et al."Mechanism Study on the Interfacial Stability of a Lithium Garnet-Type Oxide Electrolyte against Cathode Materials".ACS APPLIED ENERGY MATERIALS 1.11(2018):5968-5976.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Nian]的文章
[Long, Xinghui]的文章
[Wang, Zhi]的文章
百度学术
百度学术中相似的文章
[Zhang, Nian]的文章
[Long, Xinghui]的文章
[Wang, Zhi]的文章
必应学术
必应学术中相似的文章
[Zhang, Nian]的文章
[Long, Xinghui]的文章
[Wang, Zhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。