Sparse Blind Deconvolution and Demixing via Block Majorization-Minimization
2024-12-06
会议录名称2024 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC)
ISSN2640-009X
发表状态已发表
DOI10.1109/APSIPAASC63619.2025.10848560
摘要

To support vastly growing intelligent devices, massive connectivity with low-latency communications has become a critical requirement. In this paper, we consider a multiple-input multiple-output network, where a large amount of devices are connected to an access point sporadically. We aim to simultaneously detect the active devices and recover the transmitted signals from the received mixed measurements, without a priori channel information. The problem is mathematically modeled based on the idea of blind deconvolution and demixing for sparse signals. We formulate the optimization problem via nonconvex matrix factorization, and propose an efficient block majorization-minimization algorithm, where the signals and filters are updated with analytical solutions in an alternating way. The proposed algorithm has much lower per-iteration computational complexity compared to state-of-the-art algorithms and hence is more scalable to large-size problems. Numerical results demonstrate that our method is able to recover the sparse signals and filters with higher precision as well as faster convergence in comparison with existing methods.

会议地点Macau, Macao
会议日期3-6 Dec. 2024
URL查看原文
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/484009
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_赵子平组
作者单位
ShanghaiTech University, Shanghai
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Mengting Chen,Ziping Zhao. Sparse Blind Deconvolution and Demixing via Block Majorization-Minimization[C],2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Mengting Chen]的文章
[Ziping Zhao]的文章
百度学术
百度学术中相似的文章
[Mengting Chen]的文章
[Ziping Zhao]的文章
必应学术
必应学术中相似的文章
[Mengting Chen]的文章
[Ziping Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。