Physics informed data-driven approach for ultra-short term wind power forecasting based on temporal and graph convolutional networks
2024-07-15
会议录名称20TH INTERNATIONAL CONFERENCE ON AC AND DC POWER TRANSMISSION 2024 (ACDC 2024)
卷号2024
发表状态已发表
DOI10.1049/icp.2024.2343
摘要

With increasing penetration of renewables, wind power forecasting (WPF) is of great importance for the stable operation of modern power grid. The rapid development of artificial intelligence (AI) enables higher accuracy for WPF. This paper proposes a data-driven ultra-short term WPF method that incorporates physics information within the WPF problem. Firstly, the physics model of WPF problem is built, and the mapping from the wind speed to the wind power is approximated through physics. With the predicted wind speed from numerical weather prediction (NWP) and the physics model, the preliminary wind power output can be approximated. Secondly, the residual between the preliminary predicted value and the actual wind power is described by a data-driven network. Specifically, the structures of temporal convolutional network (TCN) and graph convolutional network (GCN) are adopted to extract the time-space features within the input data, and to determine the mapping between the input data and the residual. Finally, the preliminary predicted value and the predicted residual value are added together to get the final predicted wind power. Experimental results using practical wind farm data show that the proposed ultra-short term WPF method presents higher forecasting accuracy compared to methods that are only based on physics or data-driven method.

会议地点Shanghai, China
会议日期12-15 July 2024
URL查看原文
收录类别EI
语种英语
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/484007
专题信息科学与技术学院
信息科学与技术学院_PI研究组_刘宇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_石野组
通讯作者Yu Liu
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
2.Key laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai, 200240, People's Republic of China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhiqiang Duan,Xinchen Zou,Xiaodong Zheng,et al. Physics informed data-driven approach for ultra-short term wind power forecasting based on temporal and graph convolutional networks[C],2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhiqiang Duan]的文章
[Xinchen Zou]的文章
[Xiaodong Zheng]的文章
百度学术
百度学术中相似的文章
[Zhiqiang Duan]的文章
[Xinchen Zou]的文章
[Xiaodong Zheng]的文章
必应学术
必应学术中相似的文章
[Zhiqiang Duan]的文章
[Xinchen Zou]的文章
[Xiaodong Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。