ShanghaiTech University Knowledge Management System
Physics informed data-driven approach for ultra-short term wind power forecasting based on temporal and graph convolutional networks | |
2024-07-15 | |
会议录名称 | 20TH INTERNATIONAL CONFERENCE ON AC AND DC POWER TRANSMISSION 2024 (ACDC 2024)
![]() |
卷号 | 2024 |
发表状态 | 已发表 |
DOI | 10.1049/icp.2024.2343 |
摘要 | With increasing penetration of renewables, wind power forecasting (WPF) is of great importance for the stable operation of modern power grid. The rapid development of artificial intelligence (AI) enables higher accuracy for WPF. This paper proposes a data-driven ultra-short term WPF method that incorporates physics information within the WPF problem. Firstly, the physics model of WPF problem is built, and the mapping from the wind speed to the wind power is approximated through physics. With the predicted wind speed from numerical weather prediction (NWP) and the physics model, the preliminary wind power output can be approximated. Secondly, the residual between the preliminary predicted value and the actual wind power is described by a data-driven network. Specifically, the structures of temporal convolutional network (TCN) and graph convolutional network (GCN) are adopted to extract the time-space features within the input data, and to determine the mapping between the input data and the residual. Finally, the preliminary predicted value and the predicted residual value are added together to get the final predicted wind power. Experimental results using practical wind farm data show that the proposed ultra-short term WPF method presents higher forecasting accuracy compared to methods that are only based on physics or data-driven method. |
会议地点 | Shanghai, China |
会议日期 | 12-15 July 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/484007 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_刘宇组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_石野组 |
通讯作者 | Yu Liu |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China 2.Key laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai, 200240, People's Republic of China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhiqiang Duan,Xinchen Zou,Xiaodong Zheng,et al. Physics informed data-driven approach for ultra-short term wind power forecasting based on temporal and graph convolutional networks[C],2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。