| |||||||
ShanghaiTech University Knowledge Management System
Simple Structure Enhanced Contrastive Graph clustering | |
2024-10-10 | |
会议录名称 | 2024 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)
![]() |
发表状态 | 已发表 |
DOI | 10.1109/SMC54092.2024.10831365 |
摘要 | As an important sub-field in clustering analysis, deep graph clustering is receiving more and more attention from academia and industry. The goal of deep graph clustering is to learn effective embeddings for all nodes in the graph. Such node embeddings can effectively perform clustering task and thus be extended to various real-world application scenarios. However, existing graph clustering methods usually focus on technical-level improvements and ignore data-level information augmentation. In fact, data augmentation on graph data can effectively improve the receptive field and feature richness of model, and its effectiveness has been verified in many deep learning fields. Based on this motivation, we proposed a simple structure enhanced method for graph clustering, called SEGC. Such method only needs to construct a simple deep clustering network at the technical-level to achieve better performance by performing data augmentation at the data-level. Specifically, we leverage the underexplored potential of node activeness to perform edge-increasing and edge-decreasing operations on the original graph data, thereby generating different views to enhance the model's learning ability and receptive field. Extensive experiments on multiple real-world datasets demonstrate the effectiveness of our method. |
会议地点 | Kuching, Malaysia |
会议日期 | 6-10 Oct. 2024 |
URL | 查看原文 |
语种 | 英语 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/484006 |
专题 | 信息科学与技术学院 创业与管理学院 信息科学与技术学院_本科生 创业与管理学院_本科生 |
作者单位 | 1.School of Information Science and Technology, Shanghaitech University, Shanghai, China 2.School of Entrepreneurship and Management, Shanghaitech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Haojin Wang,Kexin Wang. Simple Structure Enhanced Contrastive Graph clustering[C],2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Haojin Wang]的文章 |
[Kexin Wang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Haojin Wang]的文章 |
[Kexin Wang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Haojin Wang]的文章 |
[Kexin Wang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。