ShanghaiTech University Knowledge Management System
Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification | |
2025 | |
发表期刊 | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (IF:11.7[JCR-2023],11.4[5-Year]) |
ISSN | 1941-0050 |
EISSN | 1941-0050 |
卷号 | PP期号:99 |
发表状态 | 已发表 |
DOI | 10.1109/TII.2025.3528583 |
摘要 | Existing methods for predicting lithium-ion battery remaining useful lifetime (RUL) rely on complete capacity degradation data or extensive historical profiles. However, such sufficient conditions are usually unavailable in practical battery usage. To cope with this issue, a framework for RUL estimation with fragment data is proposed. The framework utilizes a small amount of prior knowledge as benchmark data to create an empirical model-based predictive method for estimating RUL by fragment historical data during nonlinear degradation stage. A more specified parameter initialization is obtained by trend identification of the fragment. Particle filter (PF) algorithm is utilized for model parameter update with proposed improved resampling strategy. RUL predictions using two different datasets demonstrate the effectiveness of the proposed method. An error margin of less than ten cycles in RUL predictions is consistently achieved in CS2 dataset when employing fragments ranging from 50 to 60 cycles. And an error margin of around 20 cycles is achieved in CX2 dataset by fragments ranging from 60 to 80 cycles. The proposed method renders a more precise and stable predictive result with high confident level. |
关键词 | Capacity degradation Degradation data Error margins Historical profiles Ion batteries Lifetime prediction Lithium ions Remaining useful lives Trend identification Useful lifetime |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20250617804515 |
EI主题词 | Prediction models |
EI分类号 | 1101 Artificial Intelligence |
原始文献类型 | Article in Press |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483992 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_王浩宇组 信息科学与技术学院_PI研究组_刘宇组 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_石野组 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yiqing Lu,Ye Shi,Yu Liu,et al. Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2025,PP(99). |
APA | Yiqing Lu,Ye Shi,Yu Liu,&Haoyu Wang.(2025).Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,PP(99). |
MLA | Yiqing Lu,et al."Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS PP.99(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yiqing Lu]的文章 |
[Ye Shi]的文章 |
[Yu Liu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yiqing Lu]的文章 |
[Ye Shi]的文章 |
[Yu Liu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yiqing Lu]的文章 |
[Ye Shi]的文章 |
[Yu Liu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。