消息
×
loading..
An adaptive approximate Bayesian computation MCMC with Global-Local proposals
2024-12-20
状态已发表
摘要In this paper, we address the challenge of Markov Chain Monte Carlo (MCMC) algorithms within the Approximate Bayesian Computation (ABC) framework, which often get trapped in local optima due to their inherent local exploration mechanism. We propose a novel Global- Local ABC-MCMC algorithm that combines the “exploration” capabilities of global proposals with the “exploitation” finesse of local proposals. By integrating iterative importance resampling into the likelihood-free framework, we establish an effective global proposal distribution. We select the optimum mixture of global and local moves based on a unit cost version of expected squared jumped distance via sequential optimization. Furthermore, we propose two adaptive schemes: The first involves a normalizing flow-based probabilistic distribution learning model to iteratively improve the proposal for importance sampling, and the second focuses on optimizing the efficiency of the local sampler by utilizing Langevin dynamics and common random numbers. We numerically demonstrate that our method improves sampling efficiency and achieve more reliable convergence for complex posteriors. A software package implementing this method is available at https://github.com/caofff/GL-ABC-MCMC.
关键词Approximate Bayesian computation common random numbers iterative sampling importance resampling normalizing flow sequential optimization
语种英语
DOIarXiv:2412.15644
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:120115611
WOS类目Statistics& Probability
资助项目National Natural Science Foundation of China["12131001","12101333"]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483982
专题数学科学研究所
数学科学研究所_PI研究组(P)_汪时嘉组
通讯作者Wang, Shijia; Zhou, Yongdao
作者单位
1.Nankai Univ, Sch Stat & Data Sci, NITFID, Tianjin, Peoples R China
2.ShanghaiTech Univ, Inst Math Sci, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Cao, Xuefei,Wang, Shijia,Zhou, Yongdao. An adaptive approximate Bayesian computation MCMC with Global-Local proposals. 2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cao, Xuefei]的文章
[Wang, Shijia]的文章
[Zhou, Yongdao]的文章
百度学术
百度学术中相似的文章
[Cao, Xuefei]的文章
[Wang, Shijia]的文章
[Zhou, Yongdao]的文章
必应学术
必应学术中相似的文章
[Cao, Xuefei]的文章
[Wang, Shijia]的文章
[Zhou, Yongdao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。