A Numerical-based Parametric Error Analysis Method for Goldschmidt Floating Point Division
2023-04-14
状态已发表
摘要This paper proposes a parametric error analysis method for Goldschmidt floating point division, which reveals how the errors of the intermediate results accumulate and propagate during the Goldschmidt iterations. The analysis is developed by separating the error terms with and without convergence to zero, which are the key parts of the iterative approximate value. The proposed method leads to a state-of-the-art wordlength reduction for intermediate results during the Goldschmidt iterative computation. It enables at least half of the calculation precision reduction for the iterative factor to implement the rectangular multiplier in the divider through flexible numerical method, which can also be applied in the analysis of Goldschmidt iteration with iterative factors assigned under other ways for faster convergence. Based on the proposed method, two proof-of-concept divider models with different configurations are developed, which are verified by more than 100 billion random test vectors to show the correctness and tightness of the proposed error analysis.
关键词Floating point division Goldschmidt Error Analysis Parametric Numerical
语种英语
DOIarXiv:2305.03728
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:68522421
WOS类目Computer Science, Interdisciplinary Applications ; Mathematics
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483978
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
通讯作者Yuan, Binzhe
作者单位
Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Binzhe,Dai, Liangtao,Lou, Xin. A Numerical-based Parametric Error Analysis Method for Goldschmidt Floating Point Division. 2023.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yuan, Binzhe]的文章
[Dai, Liangtao]的文章
[Lou, Xin]的文章
百度学术
百度学术中相似的文章
[Yuan, Binzhe]的文章
[Dai, Liangtao]的文章
[Lou, Xin]的文章
必应学术
必应学术中相似的文章
[Yuan, Binzhe]的文章
[Dai, Liangtao]的文章
[Lou, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。