CADSpotting: Robust Panoptic Symbol Spotting on Large-Scale CAD Drawings
2024-12-11
状态已发表
摘要

We introduce CADSpotting, an efficient method for panoptic symbol spotting in large-scale architectural CAD drawings. Existing approaches struggle with the diversity of symbols, scale variations, and overlapping elements in CAD designs. CADSpotting overcomes these challenges by representing each primitive with dense points instead of a single primitive point, described by essential attributes like coordinates and color. Building upon a unified 3D point cloud model for joint semantic, instance, and panoptic segmentation, CADSpotting learns robust feature representations. To enable accurate segmentation in large, complex drawings, we further propose a novel Sliding Window Aggregation (SWA) technique, combining weighted voting and Non-Maximum Suppression (NMS). Moreover, we introduce a large-scale CAD dataset named LS-CAD to support our experiments. Each floorplan in LS-CAD has an average coverage of 1,000 square meter(versus 100 square meter in the existing dataset), providing a valuable benchmark for symbol spotting research. Experimental results on FloorPlanCAD and LS-CAD datasets demonstrate that CADSpotting outperforms existing methods, showcasing its robustness and scalability for real-world CAD applications.

DOIarXiv:2412.07377
相关网址查看原文
出处Arxiv
WOS记录号PPRN:119845388
WOS类目Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483975
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_PI研究组_师玉娇组
通讯作者Yu, Jingyi; Zhang, Yingliang
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.DGene Digital Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Mu, Jiazuo,Yang, Fuyi,Zhang, Yanshun,et al. CADSpotting: Robust Panoptic Symbol Spotting on Large-Scale CAD Drawings. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Mu, Jiazuo]的文章
[Yang, Fuyi]的文章
[Zhang, Yanshun]的文章
百度学术
百度学术中相似的文章
[Mu, Jiazuo]的文章
[Yang, Fuyi]的文章
[Zhang, Yanshun]的文章
必应学术
必应学术中相似的文章
[Mu, Jiazuo]的文章
[Yang, Fuyi]的文章
[Zhang, Yanshun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。