消息
×
loading..
Structured IB: Improving Information Bottleneck with Structured Feature Learning
2024-12-11
会议录名称AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE
发表状态正式接收
DOIarXiv:2412.08222
摘要

The Information Bottleneck (IB) principle has emerged as a promising approach for enhancing the generalization, robustness, and interpretability of deep neural networks, demonstrating efficacy across image segmentation, document clustering, and semantic communication. Among IB implementations, the IB Lagrangian method, employing Lagrangian multipliers, is widely adopted. While numerous methods for the optimizations of IB Lagrangian based on variational bounds and neural estimators are feasible, their performance is highly dependent on the quality of their design, which is inherently prone to errors. To address this limitation, we introduce Structured IB, a framework for investigating potential structured features. By incorporating auxiliary encoders to extract missing informative features, we generate more informative representations. Our experiments demonstrate superior prediction accuracy and task-relevant information preservation compared to the original IB Lagrangian method, even with reduced network size.

会议举办国America
会议录编者/会议主办者The Association for the Advancement of Artificial Intelligence (AAAI)
关键词Information Bottleneck Representation Learning Information Theory Machine Learning
会议名称The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)
会议地点Philadelphia, Pennsylvania at the Pennsylvania Convention Center
会议日期February 25 – March 4, 2025
学科领域计算机科学技术
学科门类工学
URL查看原文
收录类别EI
语种英语
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483974
专题信息科学与技术学院
信息科学与技术学院_PI研究组_吴幼龙组
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_文鼎柱组
作者单位
上海科技大学
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yang, Hanzhe,Wu, Youlong,Wen, Dingzhu,et al. Structured IB: Improving Information Bottleneck with Structured Feature Learning[C]//The Association for the Advancement of Artificial Intelligence (AAAI),2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Hanzhe]的文章
[Wu, Youlong]的文章
[Wen, Dingzhu]的文章
百度学术
百度学术中相似的文章
[Yang, Hanzhe]的文章
[Wu, Youlong]的文章
[Wen, Dingzhu]的文章
必应学术
必应学术中相似的文章
[Yang, Hanzhe]的文章
[Wu, Youlong]的文章
[Wen, Dingzhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。