消息
×
loading..
Qualitative and Quantitative Model Checking Against Recurrent Neural Networks
2024-11-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IF:1.2[JCR-2023],1.7[5-Year])
ISSN1000-9000
EISSN1860-4749
卷号39期号:6页码:1292-1311
发表状态已发表
DOI10.1007/s11390-023-2703-2
摘要

Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to the black-box nature of deep learning. It is an urgent and challenging task to formally reason about the behaviors of RNNs. To this end, we first present an extension of linear-time temporal logic to reason about properties with respect to RNNs, such as local robustness, reachability, and some temporal properties. Based on the proposed logic, we formalize the verification obligation as a Hoare-like triple, from both qualitative and quantitative perspectives. The former concerns whether all the outputs resulting from the inputs fulfilling the pre-condition satisfy the post-condition, whereas the latter is to compute the probability that the post-condition is satisfied on the premise that the inputs fulfill the pre-condition. To tackle these problems, we develop a systematic verification framework, mainly based on polyhedron propagation, dimension-preserving abstraction, and the Monte Carlo sampling. We also implement our algorithm with a prototype tool and conduct experiments to demonstrate its feasibility and efficiency.

关键词recurrent neural network model checking temporal logic qualitative/quantitative verification
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001401821700001
出版者SPRINGER SINGAPORE PTE LTD
EI入藏号20251118032492
EI主题词Model checking
EI分类号1101 Artificial Intelligence ; 1102.1 Computer Theory, Includes Computational Logic, Automata Theory, Switching Theory, Programming Theory ; 1201.11 Logic
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483955
专题信息科学与技术学院
信息科学与技术学院_PI研究组_宋富组
通讯作者Liu, Wan-Wei
作者单位
1.Natl Univ Def Technol, Inst Quantum Informat, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
2.Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
3.Natl Univ Def Technol, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
5.Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liang, Zhen,Liu, Wan-Wei,Song, Fu,et al. Qualitative and Quantitative Model Checking Against Recurrent Neural Networks[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2024,39(6):1292-1311.
APA Liang, Zhen.,Liu, Wan-Wei.,Song, Fu.,Xue, Bai.,Yang, Wen-Jing.,...&Pang, Zheng-Bin.(2024).Qualitative and Quantitative Model Checking Against Recurrent Neural Networks.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,39(6),1292-1311.
MLA Liang, Zhen,et al."Qualitative and Quantitative Model Checking Against Recurrent Neural Networks".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39.6(2024):1292-1311.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Zhen]的文章
[Liu, Wan-Wei]的文章
[Song, Fu]的文章
百度学术
百度学术中相似的文章
[Liang, Zhen]的文章
[Liu, Wan-Wei]的文章
[Song, Fu]的文章
必应学术
必应学术中相似的文章
[Liang, Zhen]的文章
[Liu, Wan-Wei]的文章
[Song, Fu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。