消息
×
loading..
A Momentum-Based Linearized Augmented Lagrangian Method for Nonconvex Constrained Stochastic Optimization
2025
发表期刊MATHEMATICS OF OPERATIONS RESEARCH (IF:1.4[JCR-2023],1.8[5-Year])
ISSN0364-765X
EISSN1526-5471
发表状态已发表
DOI10.1287/moor.2022.0193
摘要

Nonconvex constrained stochastic optimization has emerged in many important application areas. Subject to general functional constraints, it minimizes the sum of an expectation function and a nonsmooth regularizer. Main challenges arise because of the stochasticity in the random integrand and the possibly nonconvex functional constraints. To address these issues, we propose a momentum-based linearized augmented Lagrangian method (MLALM). MLALM adopts a single-loop framework and incorporates a recursive momentum scheme to compute the stochastic gradient, which enables the construction of a stochastic approximation to the augmented Lagrangian function. We provide an analysis of global convergence of MLALM. Under mild conditions and with unbounded penalty parameters, we show that the sequences of average stationarity measure and constraint violations are convergent in expectation. Under a constraint qualification assumption, the sequences of average constraint violation and complementary slackness measure converge to zero in expectation. We also explore properties of those related metrics when penalty parameters are bounded. Furthermore, we investigate oracle complexities of MLALM in terms of the total number of stochastic gradient evaluations to find an epsilon-stationary point and an epsilon-Karush -Kuhn -Tucker point when assuming the constraint qualification. Numerical experiments on two types of test problems reveal promising performances of the proposed algorithm.

关键词nonconvex optimization functional constraint augmented Lagrangian function stochastic gradient momentum global convergence oracle complexity
URL查看原文
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[12271278] ; Major Key Project of PCL[PCL2022A05] ; Natural Science Foundation of Shanghai[21ZR1442800]
WOS研究方向Operations Research & Management Science ; Mathematics
WOS类目Operations Research & Management Science ; Mathematics, Applied
WOS记录号WOS:001407826800001
出版者INFORMS
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483938
专题信息科学与技术学院
信息科学与技术学院_PI研究组_王浩组
通讯作者Wang, Xiao
作者单位
1.Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
2.Pengcheng Lab, Dept AI Comp, Shenzhen 518000, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Shi, Qiankun,Wang, Xiao,Wang, Hao. A Momentum-Based Linearized Augmented Lagrangian Method for Nonconvex Constrained Stochastic Optimization[J]. MATHEMATICS OF OPERATIONS RESEARCH,2025.
APA Shi, Qiankun,Wang, Xiao,&Wang, Hao.(2025).A Momentum-Based Linearized Augmented Lagrangian Method for Nonconvex Constrained Stochastic Optimization.MATHEMATICS OF OPERATIONS RESEARCH.
MLA Shi, Qiankun,et al."A Momentum-Based Linearized Augmented Lagrangian Method for Nonconvex Constrained Stochastic Optimization".MATHEMATICS OF OPERATIONS RESEARCH (2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shi, Qiankun]的文章
[Wang, Xiao]的文章
[Wang, Hao]的文章
百度学术
百度学术中相似的文章
[Shi, Qiankun]的文章
[Wang, Xiao]的文章
[Wang, Hao]的文章
必应学术
必应学术中相似的文章
[Shi, Qiankun]的文章
[Wang, Xiao]的文章
[Wang, Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。