ShanghaiTech University Knowledge Management System
Multiple Electron Transfers Enable High-Capacity Cathode Through Stable Anionic Redox | |
2025 | |
发表期刊 | ADVANCED MATERIALS (IF:27.4[JCR-2023],30.2[5-Year]) |
ISSN | 0935-9648 |
EISSN | 1521-4095 |
发表状态 | 已发表 |
DOI | 10.1002/adma.202416298 |
摘要 | Single-electron transfer, low alkali metal contents, and large-molecular masses limit the capacity of cathodes. This study uses a cost-effective and light-molecular-mass orthosilicate material, K2FeSiO4, with a high initial potassium content, as a cathode for potassium-ion batteries to enable the transfer of more than one electron. Despite the limited valence change of Fe ions during cycling, K2FeSiO4 can undergo multiple electron transfers via successive oxygen anionic redox reactions to generate a high reversible capacity. Although the formation of O-O dimers in K2FeSiO4 occur upon removing large amounts of potassium, the strong binding effect of Si on O mitigates irreversible oxygen release and voltage degradation during cycling. K2FeSiO4 achieves 236 mAh g(-1) at 50 mA g(-1), with an energy density of 520 Wh kg(-1), which can be comparable with commercial LiFePO4 materials. Moreover, it also exhibits 1400 stable cycles under high-current conditions. These findings enhance the potential commercialization prospects for potassium-ion batteries. |
关键词 | anionic redox cathode K2FeSiO4 multiple electron transfer potassium-ion batteries |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
WOS类目 | Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter |
WOS记录号 | WOS:001397536500001 |
出版者 | WILEY-V C H VERLAG GMBH |
EI入藏号 | 20250317684522 |
EI主题词 | Redox reactions |
EI分类号 | 1301.1.3 Atomic and Molecular Physics ; 801.3 Physical Chemistry ; 802.2 Chemical Reactions ; 804.2 Inorganic Compounds |
原始文献类型 | Article in Press |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483898 |
专题 | 物质科学与技术学院 物质科学与技术学院_博士生 |
通讯作者 | Sun, Fanfei; Lu, Bingan |
作者单位 | 1.Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China 2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 3.Guangdong Technion Israel Inst Technol, Mat Sci & Engn Program, MATEC Key Lab, Shantou 515063, Peoples R China 4.Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China 5.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China 6.Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201204, Peoples R China 7.Clemson Univ, Clemson Nanomat Inst, Dept Phys & Astron, Clemson, SC 29634 USA 8.Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Lichen,Dai, Zhongqin,Fu, Hongwei,et al. Multiple Electron Transfers Enable High-Capacity Cathode Through Stable Anionic Redox[J]. ADVANCED MATERIALS,2025. |
APA | Wu, Lichen.,Dai, Zhongqin.,Fu, Hongwei.,Shen, Mengkang.,Cha, Limei.,...&Lu, Bingan.(2025).Multiple Electron Transfers Enable High-Capacity Cathode Through Stable Anionic Redox.ADVANCED MATERIALS. |
MLA | Wu, Lichen,et al."Multiple Electron Transfers Enable High-Capacity Cathode Through Stable Anionic Redox".ADVANCED MATERIALS (2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。