Self-supervised denoising for high-dimensional magnetic resonance image
2025-06
发表期刊BIOMEDICAL SIGNAL PROCESSING AND CONTROL (IF:4.9[JCR-2023],4.9[5-Year])
ISSN1746-8094
EISSN1746-8108
卷号104
发表状态已发表
DOI10.1016/j.bspc.2024.107451
摘要

The acquisition in magnetic resonance imaging (MRI) presents the trade-offs between the signal-to-noise ratio (SNR), spatial resolution, and scanning time. Recently, self-supervised denoising methods without high SNR images for training are emerging as competitive alternatives in MRI denoising. However, self-supervised denoising methods for high-dimensional MRI data require further exploration, as the direct application of current methods is not efficient enough. In this work, we propose Noise2SR-M (N2SR-M), a self-supervised denoising method for high-dimensional MRI data. We discuss the signal correlation of voxels in high-dimensional MRI. Utilizing the correlations of signals, N2SR-M is trained on paired noisy data with different spatial sizes generated from individual noisy MRI data. The paired noisy data comprises sub-sampled noisy data in the spatial domain and the original noisy data. Meanwhile, N2SR-M performs joint denoising across various contrast dimensions. By leveraging contrast dimension constraints and the effectiveness of a super-resolution-based training strategy, N2SR-M achieves superior performance while preserving fine tissue structures in denoising MRI data. We extend comprehensive experiments involving simulated and real multi-echo gradient echo (mGRE), GRE phase, and diffusion weighted imaging data to evaluate the effectiveness of N2SR-M. The results show that N2SR-M successfully restores detailed image content and effectively avoids the generation of artifacts or overblurring. Furthermore, the N2SR-M denoised data induce a more accurate parameter mapping (i.e., R2∗, quantitative susceptibility mapping, and diffusion tensor imaging). © 2025 Elsevier Ltd

关键词Dynamic contrast enhanced MRI Signal to noise ratio BOLD De-noising Denoising methods Diffusion weighted imaging High-dimensional High-dimensional magnetic resonance imaging Higher-dimensional Noisy data Resonance imaging data Self-supervised
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[62071299]
WOS研究方向Engineering
WOS类目Engineering, Biomedical
WOS记录号WOS:001413037800001
出版者Elsevier Ltd
EI入藏号20250417765687
EI主题词Diffusion tensor imaging
EI分类号101.1 ; 1106.3 ; 716.1 Information Theory and Signal Processing ; 746 Imaging Techniques
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483859
专题信息科学与技术学院
物质科学与技术学院_硕士生
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_张玉瑶组
生物医学工程学院
生物医学工程学院_PI研究组_张雷组(生医工)
通讯作者Zhang, Yuyao
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
2.Lingang Laboratory, Shanghai, China;
3.School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China;
4.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China;
5.Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院;  上海科技大学
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Tian, Xuanyu,Wu, Jiangjie,Lao, Guoyan,et al. Self-supervised denoising for high-dimensional magnetic resonance image[J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL,2025,104.
APA Tian, Xuanyu.,Wu, Jiangjie.,Lao, Guoyan.,Du, Chenhe.,Jiang, Changhao.,...&Zhang, Yuyao.(2025).Self-supervised denoising for high-dimensional magnetic resonance image.BIOMEDICAL SIGNAL PROCESSING AND CONTROL,104.
MLA Tian, Xuanyu,et al."Self-supervised denoising for high-dimensional magnetic resonance image".BIOMEDICAL SIGNAL PROCESSING AND CONTROL 104(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tian, Xuanyu]的文章
[Wu, Jiangjie]的文章
[Lao, Guoyan]的文章
百度学术
百度学术中相似的文章
[Tian, Xuanyu]的文章
[Wu, Jiangjie]的文章
[Lao, Guoyan]的文章
必应学术
必应学术中相似的文章
[Tian, Xuanyu]的文章
[Wu, Jiangjie]的文章
[Lao, Guoyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。