ShanghaiTech University Knowledge Management System
Self-supervised denoising for high-dimensional magnetic resonance image | |
2025-06 | |
发表期刊 | BIOMEDICAL SIGNAL PROCESSING AND CONTROL (IF:4.9[JCR-2023],4.9[5-Year]) |
ISSN | 1746-8094 |
EISSN | 1746-8108 |
卷号 | 104 |
发表状态 | 已发表 |
DOI | 10.1016/j.bspc.2024.107451 |
摘要 | The acquisition in magnetic resonance imaging (MRI) presents the trade-offs between the signal-to-noise ratio (SNR), spatial resolution, and scanning time. Recently, self-supervised denoising methods without high SNR images for training are emerging as competitive alternatives in MRI denoising. However, self-supervised denoising methods for high-dimensional MRI data require further exploration, as the direct application of current methods is not efficient enough. In this work, we propose Noise2SR-M (N2SR-M), a self-supervised denoising method for high-dimensional MRI data. We discuss the signal correlation of voxels in high-dimensional MRI. Utilizing the correlations of signals, N2SR-M is trained on paired noisy data with different spatial sizes generated from individual noisy MRI data. The paired noisy data comprises sub-sampled noisy data in the spatial domain and the original noisy data. Meanwhile, N2SR-M performs joint denoising across various contrast dimensions. By leveraging contrast dimension constraints and the effectiveness of a super-resolution-based training strategy, N2SR-M achieves superior performance while preserving fine tissue structures in denoising MRI data. We extend comprehensive experiments involving simulated and real multi-echo gradient echo (mGRE), GRE phase, and diffusion weighted imaging data to evaluate the effectiveness of N2SR-M. The results show that N2SR-M successfully restores detailed image content and effectively avoids the generation of artifacts or overblurring. Furthermore, the N2SR-M denoised data induce a more accurate parameter mapping (i.e., R2∗, quantitative susceptibility mapping, and diffusion tensor imaging). © 2025 Elsevier Ltd |
关键词 | Dynamic contrast enhanced MRI Signal to noise ratio BOLD De-noising Denoising methods Diffusion weighted imaging High-dimensional High-dimensional magnetic resonance imaging Higher-dimensional Noisy data Resonance imaging data Self-supervised |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62071299] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Biomedical |
WOS记录号 | WOS:001413037800001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20250417765687 |
EI主题词 | Diffusion tensor imaging |
EI分类号 | 101.1 ; 1106.3 ; 716.1 Information Theory and Signal Processing ; 746 Imaging Techniques |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483859 |
专题 | 信息科学与技术学院 物质科学与技术学院_硕士生 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_张玉瑶组 生物医学工程学院 生物医学工程学院_PI研究组_张雷组(生医工) |
通讯作者 | Zhang, Yuyao |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China; 2.Lingang Laboratory, Shanghai, China; 3.School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; 4.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; 5.Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院; 上海科技大学 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Tian, Xuanyu,Wu, Jiangjie,Lao, Guoyan,et al. Self-supervised denoising for high-dimensional magnetic resonance image[J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL,2025,104. |
APA | Tian, Xuanyu.,Wu, Jiangjie.,Lao, Guoyan.,Du, Chenhe.,Jiang, Changhao.,...&Zhang, Yuyao.(2025).Self-supervised denoising for high-dimensional magnetic resonance image.BIOMEDICAL SIGNAL PROCESSING AND CONTROL,104. |
MLA | Tian, Xuanyu,et al."Self-supervised denoising for high-dimensional magnetic resonance image".BIOMEDICAL SIGNAL PROCESSING AND CONTROL 104(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。