Limited-view photoacoustic imaging reconstruction via high-quality self-supervised neural representation
2025-04
发表期刊PHOTOACOUSTICS (IF:7.1[JCR-2023],7.2[5-Year])
ISSN2213-5979
卷号42
DOI10.1016/j.pacs.2025.100685
摘要In practical applications within the human body, it is often challenging to fully encompass the target tissue or organ, necessitating the use of limited-view arrays, which can lead to the loss of crucial information. Addressing the reconstruction of photoacoustic sensor signals in limited-view detection spaces has become a focal point of current research. In this study, we introduce a self-supervised network termed HIgh-quality Self-supervised neural representation (HIS), which tackles the inverse problem of photoacoustic imaging to reconstruct high-quality photoacoustic images from sensor data acquired under limited viewpoints. We regard the desired reconstructed photoacoustic image as an implicit continuous function in 2D image space, viewing the pixels of the image as sparse discrete samples. The HIS's objective is to learn the continuous function from limited observations by utilizing a fully connected neural network combined with Fourier feature position encoding. By simply minimizing the error between the network's predicted sensor data and the actual sensor data, HIS is trained to represent the observed continuous model. The results indicate that the proposed HIS model offers superior image reconstruction quality compared to three commonly used methods for photoacoustic image reconstruction. © 2025 The Authors
关键词Inverse problems Continuous functions High quality Images reconstruction Implicit neural representation Limited-view Neural representations Photo-acoustic imaging Photoacoustic image Self-supervised Sensors data
URL查看原文
收录类别EI
语种英语
出版者Elsevier GmbH
EI入藏号20250417765616
EI主题词Image reconstruction
EI分类号1106.3.1 ; 1201
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483845
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_张玉瑶组
信息科学与技术学院_PI研究组_蔡夕然组
通讯作者Zhang, Yuyao
作者单位
1.School of Information Science and Technology, ShanghaiTech University, No. 393 HuaXia Middle Road, Pudong New Dist.; 201210, China;
2.School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui; 230026, China;
3.Hybrid Imaging System Laboratory, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu; 215123, China;
4.School of Engineering Science, University of Science and Technology of China, Hefei, Anhui; 230026, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xiao, Youshen,Shen, Yuting,Liao, Sheng,et al. Limited-view photoacoustic imaging reconstruction via high-quality self-supervised neural representation[J]. PHOTOACOUSTICS,2025,42.
APA Xiao, Youshen.,Shen, Yuting.,Liao, Sheng.,Yao, Bowei.,Cai, Xiran.,...&Gao, Fei.(2025).Limited-view photoacoustic imaging reconstruction via high-quality self-supervised neural representation.PHOTOACOUSTICS,42.
MLA Xiao, Youshen,et al."Limited-view photoacoustic imaging reconstruction via high-quality self-supervised neural representation".PHOTOACOUSTICS 42(2025).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiao, Youshen]的文章
[Shen, Yuting]的文章
[Liao, Sheng]的文章
百度学术
百度学术中相似的文章
[Xiao, Youshen]的文章
[Shen, Yuting]的文章
[Liao, Sheng]的文章
必应学术
必应学术中相似的文章
[Xiao, Youshen]的文章
[Shen, Yuting]的文章
[Liao, Sheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1016@j.pacs.2025.100685.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。