消息
×
loading..
Evaluating Fairness of Mask R-CNN for Kidney Infection Detection based on Renal Scintigraphy
2024-12-18
会议录名称2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIGDATA)
ISSN2639-1589
发表状态已发表
DOI10.1109/BigData62323.2024.10825439
摘要99mTc-DMSA renal scan plays a crucial role in assessing functional abnormalities in the kidneys. A deep learning model, Mask R-CNN, showed much promise in diagnosing acute pyelonephritis, a type of kidney infection. This study evaluated the diagnostic performance and fairness of Mask R-CNN and Faster R-CNN using a 99mTc-DMSA renal dataset. The classification results showed that Mask R-CNN achieved an accuracy of 0.89, while Faster R-CNN reached an accuracy of 0.88. Both models demonstrated strong classification capabilities for kidney conditions. Furthermore, the analysis of fairness across sex and age groups indicated that neither model exhibited significant bias, thereby supporting their suitability for clinical applications. Future research should consider integrating more patient data to further enhance the diagnostic capabilities and fairness assessments of the models.
会议地点Washington, DC, USA
会议日期15-18 Dec. 2024
URL查看原文
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/474152
专题生物医学工程学院
生物医学工程学院_硕士生
生物医学工程学院_硕士生
生物医学工程学院_PI研究组_万之瑜组
作者单位
1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
2.Central Research Institute UIH Group, Shanghai, China
3.Department of Nuclear Medicine, Children’s Hospital of Fudan University, Shanghai, China
第一作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Jiayi Wang,Mingyan Wu,Yuhang Guo,et al. Evaluating Fairness of Mask R-CNN for Kidney Infection Detection based on Renal Scintigraphy[C],2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiayi Wang]的文章
[Mingyan Wu]的文章
[Yuhang Guo]的文章
百度学术
百度学术中相似的文章
[Jiayi Wang]的文章
[Mingyan Wu]的文章
[Yuhang Guo]的文章
必应学术
必应学术中相似的文章
[Jiayi Wang]的文章
[Mingyan Wu]的文章
[Yuhang Guo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。