| |||||||
ShanghaiTech University Knowledge Management System
Evaluating Fairness of Mask R-CNN for Kidney Infection Detection based on Renal Scintigraphy | |
2024-12-18 | |
会议录名称 | 2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIGDATA)
![]() |
ISSN | 2639-1589 |
发表状态 | 已发表 |
DOI | 10.1109/BigData62323.2024.10825439 |
摘要 | 99mTc-DMSA renal scan plays a crucial role in assessing functional abnormalities in the kidneys. A deep learning model, Mask R-CNN, showed much promise in diagnosing acute pyelonephritis, a type of kidney infection. This study evaluated the diagnostic performance and fairness of Mask R-CNN and Faster R-CNN using a 99mTc-DMSA renal dataset. The classification results showed that Mask R-CNN achieved an accuracy of 0.89, while Faster R-CNN reached an accuracy of 0.88. Both models demonstrated strong classification capabilities for kidney conditions. Furthermore, the analysis of fairness across sex and age groups indicated that neither model exhibited significant bias, thereby supporting their suitability for clinical applications. Future research should consider integrating more patient data to further enhance the diagnostic capabilities and fairness assessments of the models. |
会议地点 | Washington, DC, USA |
会议日期 | 15-18 Dec. 2024 |
URL | 查看原文 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/474152 |
专题 | 生物医学工程学院 生物医学工程学院_硕士生 生物医学工程学院_硕士生 生物医学工程学院_PI研究组_万之瑜组 |
作者单位 | 1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China 2.Central Research Institute UIH Group, Shanghai, China 3.Department of Nuclear Medicine, Children’s Hospital of Fudan University, Shanghai, China |
第一作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Jiayi Wang,Mingyan Wu,Yuhang Guo,et al. Evaluating Fairness of Mask R-CNN for Kidney Infection Detection based on Renal Scintigraphy[C],2024. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。