| |||||||
ShanghaiTech University Knowledge Management System
Point-SAM: Promptable 3D Segmentation Model for Point Clouds | |
2025-04-24 | |
会议录名称 | THE THIRTEENTH INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS |
发表状态 | 正式接收 |
摘要 | The development of 2D foundation models for image segmentation has been significantly advanced by the Segment Anything Model (SAM). However, achieving similar success in 3D models remains a challenge due to issues such as non-unified data formats, poor model scalability, and the scarcity of labeled data with diverse masks. To this end, we propose a 3D promptable segmentation model Point-SAM, focusing on point clouds. We employ an efficient transformer-based architecture tailored for point clouds, extending SAM to the 3D domain. We then distill the rich knowledge from 2D SAM for Point-SAM training by introducing a data engine to generate part-level and object-level pseudo-labels at scale from 2D SAM. Our model outperforms state-of-the-art 3D segmentation models on several indoor and outdoor benchmarks and demonstrates a variety of applications, such as interactive 3D annotation and zero-shot 3D instance proposal. |
会议名称 | The Thirteenth International Conference on Learning Representations |
URL | 查看原文 |
语种 | 英语 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/471024 |
专题 | 信息科学与技术学院_PI研究组_顾家远组 |
共同第一作者 | Gu, Jiayuan |
通讯作者 | Zhou, Yuchen; Gu, Jiayuan |
作者单位 | 1.Univ Calif San Diego, La Jolla, CA 92093, USA 2.Shanghai Tech Univ, Shanghai, Peoples R China 3.Hillbot, La Jolla, CA, USA |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhou, Yuchen,Gu, Jiayuan,Chiang, Tung Yen,et al. Point-SAM: Promptable 3D Segmentation Model for Point Clouds[C],2025. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。