ShanghaiTech University Knowledge Management System
Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds | |
2025-05 | |
发表期刊 | PATTERN RECOGNITION (IF:7.5[JCR-2023],7.6[5-Year]) |
ISSN | 0031-3203 |
EISSN | 1873-5142 |
卷号 | 161 |
发表状态 | 已发表 |
DOI | 10.1016/j.patcog.2024.111280 |
摘要 | We study the clustering of high-dimensional multi-view data with randomly missing features. Most existing methods employ the low-dimensional subspace assumption, which ignore the fact that data may reside close to multiple nonlinear manifolds, let alone nonlinear relationships between multiple views. Usually, they give multiple views equal weights, making them sensitive to redundant and noisy views. In most cases, completion and clustering are treated as separate processes, preventing them from reinforcing each other. To address these problems, we propose a Robust Nonlinear Multi-view Subspace Clustering and Completion (RNMSCC) algorithm, which projects multi-view data to high-dimensional feature spaces and integrates data completion and clustering therein. For data completion, the minimum intrinsic rank of sub-manifold is promoted while for clustering, an adaptive weighting technique is developed to automatically adjust the importance of multiple views in self-expression. Integrated with manifold alignment, redundant and noisy views are selected out, thus the learning process enjoys robust mutual reinforcement. The optimization problem is solved by an alternating algorithm. Experiments on real-world datasets validate its performance advantage over state-of-the-art methods. © 2024 Elsevier Ltd |
关键词 | Adversarial machine learning Contrastive Learning Data assimilation Spatio-temporal data High-dimensional Higher-dimensional Incomplete view Missing data Multi-view learning Multi-views Multiple views Nonlinear manifolds Subspace clustering |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | ShanghaiTech University[2019F0203-000-06] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001392850300001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20245217568717 |
EI主题词 | Nonlinear simulations |
EI分类号 | 1101.2 ; 1106.2 ; 1106.4 ; 1106.5 |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/467872 |
专题 | 信息科学与技术学院 信息科学与技术学院_公共科研平台_机电能源与电子器件科研平台 信息科学与技术学院_PI研究组_吴幼龙组 信息科学与技术学院_硕士生 |
通讯作者 | Mao, Zhan-Wang |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China; 2.RIKEN Center for Advanced Intelligence Project (AIP), Tokyo; 103-0027, Japan |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Mao, Zhan-Wang,Sun, Lu,Wu, Youlong. Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds[J]. PATTERN RECOGNITION,2025,161. |
APA | Mao, Zhan-Wang,Sun, Lu,&Wu, Youlong.(2025).Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds.PATTERN RECOGNITION,161. |
MLA | Mao, Zhan-Wang,et al."Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds".PATTERN RECOGNITION 161(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。