Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds
2025-05
发表期刊PATTERN RECOGNITION (IF:7.5[JCR-2023],7.6[5-Year])
ISSN0031-3203
EISSN1873-5142
卷号161
发表状态已发表
DOI10.1016/j.patcog.2024.111280
摘要

We study the clustering of high-dimensional multi-view data with randomly missing features. Most existing methods employ the low-dimensional subspace assumption, which ignore the fact that data may reside close to multiple nonlinear manifolds, let alone nonlinear relationships between multiple views. Usually, they give multiple views equal weights, making them sensitive to redundant and noisy views. In most cases, completion and clustering are treated as separate processes, preventing them from reinforcing each other. To address these problems, we propose a Robust Nonlinear Multi-view Subspace Clustering and Completion (RNMSCC) algorithm, which projects multi-view data to high-dimensional feature spaces and integrates data completion and clustering therein. For data completion, the minimum intrinsic rank of sub-manifold is promoted while for clustering, an adaptive weighting technique is developed to automatically adjust the importance of multiple views in self-expression. Integrated with manifold alignment, redundant and noisy views are selected out, thus the learning process enjoys robust mutual reinforcement. The optimization problem is solved by an alternating algorithm. Experiments on real-world datasets validate its performance advantage over state-of-the-art methods. © 2024 Elsevier Ltd

关键词Adversarial machine learning Contrastive Learning Data assimilation Spatio-temporal data High-dimensional Higher-dimensional Incomplete view Missing data Multi-view learning Multi-views Multiple views Nonlinear manifolds Subspace clustering
URL查看原文
收录类别EI ; SCI
语种英语
资助项目ShanghaiTech University[2019F0203-000-06]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001392850300001
出版者Elsevier Ltd
EI入藏号20245217568717
EI主题词Nonlinear simulations
EI分类号1101.2 ; 1106.2 ; 1106.4 ; 1106.5
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/467872
专题信息科学与技术学院
信息科学与技术学院_公共科研平台_机电能源与电子器件科研平台
信息科学与技术学院_PI研究组_吴幼龙组
信息科学与技术学院_硕士生
通讯作者Mao, Zhan-Wang
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China;
2.RIKEN Center for Advanced Intelligence Project (AIP), Tokyo; 103-0027, Japan
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Mao, Zhan-Wang,Sun, Lu,Wu, Youlong. Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds[J]. PATTERN RECOGNITION,2025,161.
APA Mao, Zhan-Wang,Sun, Lu,&Wu, Youlong.(2025).Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds.PATTERN RECOGNITION,161.
MLA Mao, Zhan-Wang,et al."Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds".PATTERN RECOGNITION 161(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Mao, Zhan-Wang]的文章
[Sun, Lu]的文章
[Wu, Youlong]的文章
百度学术
百度学术中相似的文章
[Mao, Zhan-Wang]的文章
[Sun, Lu]的文章
[Wu, Youlong]的文章
必应学术
必应学术中相似的文章
[Mao, Zhan-Wang]的文章
[Sun, Lu]的文章
[Wu, Youlong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。