Pinning the Surface Layered Oxide Structure in High Temperature Calcination Using Conformal Atomic Layer Deposition Coating for Fast Charging Cathode
2025-04
发表期刊ADVANCED FUNCTIONAL MATERIALS (IF:18.5[JCR-2023],19.6[5-Year])
ISSN1616-301X
EISSN1616-3028
卷号35期号:17
发表状态已发表
DOI10.1002/adfm.202423888
摘要

In the solid-state synthesis of layered oxides, achieving cathode powder with precise morphology, crystal structure, and surface properties demands a delicate balance between thermodynamics and kinetics. Elevated temperatures are indispensable for driving the reaction toward completion, facilitating the formation of ordered layered structures essential for efficient lithium-ion transportation in Li-ion batteries. However, high temperatures risk inducing Li/Ni mixing and rock-salt formation, particularly pronounced in layered oxides rich in Ni content, detrimentally impacting their performance. To address this challenge, the approach involves a precisely designed conformal coating with a high affinity for oxygen atoms, strategically employed to pin the surface layered oxide structure even under elevated temperatures. By preventing undesired surface decomposition during the high-temperature lithiation process, this innovation fosters the formation of well-ordered layered structures on the surface. Consequently, this pioneering strategy substantially mitigated phase separation during high-rate cycling, thereby unlocking exceptional rate capability and cycle stability in layered oxide cathodes. The strategy establishes a new pathway for synthesizing next-generation, high-power density battery materials. © 2024 Wiley-VCH GmbH.

关键词Crystal atomic structure Fast charging (Batteries) Hard facing Photoionization Solid-State Batteries Surface chemistry Temperature Atomic-layer deposition Elevated temperature Fast charging High-temperature calcination Highest temperature Layered oxide cathodes Layered oxides Layered Structures Oxide structures Solid-state synthesis
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Shanghai Key Laboratory of High-Resolution Electron Microscopy (Shanghai Science and Technology Plan)[
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:001385275100001
出版者John Wiley and Sons Inc
EI入藏号20250117628320
EI主题词Atomic layer deposition
EI分类号1301.1.3 ; 1301.4.1.1 ; 201.1.1 ; 208.1 ; 302.1 ; 702.1.2 Secondary Batteries ; 802.2 Chemical Reactions ; 805 Chemical Engineering, General
原始文献类型Article in Press
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/467865
专题物质科学与技术学院
大科学中心_PI研究组_柳学榕组
物质科学与技术学院_硕士生
物质科学与技术学院_博士生
物质科学与技术学院_PI研究组_谢琎组
物质科学与技术学院_PI研究组_郑帆组
通讯作者Xie, Jin
作者单位
1.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China;
2.Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai; 201210, China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院;  上海科技大学
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Cai, Xincan,Yan, Pu,Xie, Tianye,et al. Pinning the Surface Layered Oxide Structure in High Temperature Calcination Using Conformal Atomic Layer Deposition Coating for Fast Charging Cathode[J]. ADVANCED FUNCTIONAL MATERIALS,2025,35(17).
APA Cai, Xincan.,Yan, Pu.,Xie, Tianye.,Wu, Yifan.,Zheng, Caihong.,...&Xie, Jin.(2025).Pinning the Surface Layered Oxide Structure in High Temperature Calcination Using Conformal Atomic Layer Deposition Coating for Fast Charging Cathode.ADVANCED FUNCTIONAL MATERIALS,35(17).
MLA Cai, Xincan,et al."Pinning the Surface Layered Oxide Structure in High Temperature Calcination Using Conformal Atomic Layer Deposition Coating for Fast Charging Cathode".ADVANCED FUNCTIONAL MATERIALS 35.17(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cai, Xincan]的文章
[Yan, Pu]的文章
[Xie, Tianye]的文章
百度学术
百度学术中相似的文章
[Cai, Xincan]的文章
[Yan, Pu]的文章
[Xie, Tianye]的文章
必应学术
必应学术中相似的文章
[Cai, Xincan]的文章
[Yan, Pu]的文章
[Xie, Tianye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。