Privacy-Preserving Coded Schemes for Multi-Server Federated Learning with Straggling Links
2024
发表期刊IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY (IF:6.3[JCR-2023],7.3[5-Year])
ISSN1556-6021
EISSN1556-6021
卷号PP期号:99页码:1222-1236
发表状态已发表
DOI10.1109/TIFS.2024.3524160
摘要

Federated Learning (FL) has emerged as an unparalleled machine learning paradigm where multiple edge clients jointly train a global model without sharing the raw data. However, sharing local models or gradients still compromises clients’ privacy and could be susceptible to delivery failures due to unreliable communication links. To address these issues, this paper considers a multi-server FL where E edge clients wish to jointly train the global model with the help of H servers while guaranteeing data privacy and meanwhile combating s ≤ H unreliable links per client. We first propose a hybrid coding scheme based on repetition coding and MDS Coding, such that any Ts colluding servers cannot deduce any client data besides the aggregated model, and any Te colluding clients remain unaware of honest clients’ data. Furthermore, we propose a Lagrange coding with mask (LCM) to ensure more stringent privacy protection that additionally demands that colluding servers possess no knowledge about either the local or global models. Furthermore, we establish lower bounds for both the uplink and downlink communication loads and theoretically prove that the hybrid scheme and LCM scheme can achieve the optimal uplink communication loads under the first and second threat models, respectively. For the second threat model with no straggling link, the LCM scheme is optimal. These demonstrate the communication efficiency, robustness, and privacy guarantee of our schemes.

关键词Adversarial machine learning Differential privacy Coding computing Communication load Distributed learning Global models Lagrange Local model Multiservers Secure aggregations Straggling link Uplink communication
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20250217649921
EI主题词Federated learning
EI分类号1101.2 ; 1106.2 ; 1108.1
原始文献类型Journal article (JA)
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/467856
专题信息科学与技术学院
信息科学与技术学院_PI研究组_吴幼龙组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Cyber Science and Engineering, Southeast University, Nanjing, China
3.Engineering Research Center of Blockchain Application, Supervision and Management, (Southeast University), Ministry of Education, China
4.Data61, CSIRO, Sydney, NSW, Australia
5.Innovation Academy for Microsatellites of Chinese Academy of Science, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Kai Liang,Songze Li,Ming Ding,et al. Privacy-Preserving Coded Schemes for Multi-Server Federated Learning with Straggling Links[J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,2024,PP(99):1222-1236.
APA Kai Liang,Songze Li,Ming Ding,Feng Tian,&Youlong Wu.(2024).Privacy-Preserving Coded Schemes for Multi-Server Federated Learning with Straggling Links.IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,PP(99),1222-1236.
MLA Kai Liang,et al."Privacy-Preserving Coded Schemes for Multi-Server Federated Learning with Straggling Links".IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY PP.99(2024):1222-1236.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Kai Liang]的文章
[Songze Li]的文章
[Ming Ding]的文章
百度学术
百度学术中相似的文章
[Kai Liang]的文章
[Songze Li]的文章
[Ming Ding]的文章
必应学术
必应学术中相似的文章
[Kai Liang]的文章
[Songze Li]的文章
[Ming Ding]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。