Unsupervised Neural Representation for Limited-View Photoacoustic Imaging Reconstruction
2024
会议录名称2024 IEEE ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL JOINT SYMPOSIUM (UFFC-JS)
ISSN1099-4734
发表状态已发表
DOI10.1109/UFFC-JS60046.2024.10794057
摘要

In practical applications within the human body, it is often challenging to fully encircle the target tissue or organ, necessitating the use of limited-view arrays, which can lead to the loss of critical information. Addressing the reconstruction of photoacoustic sensor signals in limited-view detection spaces has become a focal point of current research. In this study, we introduce an unsupervised network designed to tackle the inverse problem in photoacoustic imaging, aiming to reconstruct high-quality photoacoustic images from sensor data acquired under limited-view conditions. We propose a method that leverages fully connected neural networks and Fourier feature positional encoding to learn an implicit continuous representation of photoacoustic images from limited observation data. The network is trained by minimizing the error between the predicted and actual sensor data. Experimental results show that our model out-performs three commonly used methods in terms of reconstruction quality.

会议地点Taipei, Taiwan
会议日期22-26 Sept. 2024
URL查看原文
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/464736
专题信息科学与技术学院
信息科学与技术学院_PI研究组_高飞组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_蔡夕然组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Youshen Xiao,Yuting Shen,Bowei Yao,et al. Unsupervised Neural Representation for Limited-View Photoacoustic Imaging Reconstruction[C],2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Youshen Xiao]的文章
[Yuting Shen]的文章
[Bowei Yao]的文章
百度学术
百度学术中相似的文章
[Youshen Xiao]的文章
[Yuting Shen]的文章
[Bowei Yao]的文章
必应学术
必应学术中相似的文章
[Youshen Xiao]的文章
[Yuting Shen]的文章
[Bowei Yao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。