ShanghaiTech University Knowledge Management System
Unsupervised Neural Representation for Limited-View Photoacoustic Imaging Reconstruction | |
2024 | |
会议录名称 | 2024 IEEE ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL JOINT SYMPOSIUM (UFFC-JS)
![]() |
ISSN | 1099-4734 |
发表状态 | 已发表 |
DOI | 10.1109/UFFC-JS60046.2024.10794057 |
摘要 | In practical applications within the human body, it is often challenging to fully encircle the target tissue or organ, necessitating the use of limited-view arrays, which can lead to the loss of critical information. Addressing the reconstruction of photoacoustic sensor signals in limited-view detection spaces has become a focal point of current research. In this study, we introduce an unsupervised network designed to tackle the inverse problem in photoacoustic imaging, aiming to reconstruct high-quality photoacoustic images from sensor data acquired under limited-view conditions. We propose a method that leverages fully connected neural networks and Fourier feature positional encoding to learn an implicit continuous representation of photoacoustic images from limited observation data. The network is trained by minimizing the error between the predicted and actual sensor data. Experimental results show that our model out-performs three commonly used methods in terms of reconstruction quality. |
会议地点 | Taipei, Taiwan |
会议日期 | 22-26 Sept. 2024 |
URL | 查看原文 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/464736 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_高飞组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_蔡夕然组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Youshen Xiao,Yuting Shen,Bowei Yao,et al. Unsupervised Neural Representation for Limited-View Photoacoustic Imaging Reconstruction[C],2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。