| |||||||
ShanghaiTech University Knowledge Management System
Detecting Malicious Accounts in Web3 through Transaction Graph | |
2024-10-27 | |
会议录名称 | PROCEEDINGS - 2024 39TH ACM/IEEE INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2024 |
ISSN | 1938-4300 |
页码 | 2482-2483 |
发表状态 | 已发表 |
DOI | 10.1145/3691620.3695344 |
摘要 | The web3 applications have recently been growing, especially on the Ethereum platform, starting to become the target of scammers. The web3 scams, imitating the services provided by legitimate platforms, mimic regular activity to deceive users. The current phishing account detection tools utilize graph learning or sampling algorithms to obtain graph features. However, large-scale transaction networks with temporal attributes conform to a power-law distribution, posing challenges in detecting web3 scams. In this paper, we present ScamSweeper, a novel framework to identify web3 scams on Ethereum. Furthermore, we collect a large-scale transaction dataset consisting of web3 scams, phishing, and normal accounts. Our experiments indicate that ScamSweeper exceeds the state-of-the-art in detecting web3 scams. © 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM. |
会议录编者/会议主办者 | ACM ; ACM SIGAI ; Google ; IEEE ; Special Interest Group on Software Engineering (SIGSOFT) ; University of California, Davis (UC Davis) |
关键词 | Anonymity 'current Deep learning Detection tools Graph features Large-scale transactions Malicious account Phishing Sampling algorithm Transaction graph Web3 scam |
会议名称 | 39th ACM/IEEE International Conference on Automated Software Engineering, ASE 2024 |
会议地点 | Sacramento, CA, United states |
会议日期 | October 28, 2024 - November 1, 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computing Machinery, Inc |
EI入藏号 | 20245117563826 |
EI主题词 | Phishing |
EI分类号 | 1106.2 ; 1108.1 ; 902.3 Legal Aspects |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/461533 |
专题 | 信息科学与技术学院_硕士生 |
通讯作者 | Li, Wenkai; Li, Xiaoqi |
作者单位 | 1.Hainan University, Haikou, China; 2.ShanghaiTech University, Shanghai, China; 3.Keen Security Lab, Tencent, Shanghai, China |
推荐引用方式 GB/T 7714 | Li, Wenkai,Liu, Zhijie,Li, Xiaoqi,et al. Detecting Malicious Accounts in Web3 through Transaction Graph[C]//ACM, ACM SIGAI, Google, IEEE, Special Interest Group on Software Engineering (SIGSOFT), University of California, Davis (UC Davis):Association for Computing Machinery, Inc,2024:2482-2483. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。