消息
×
loading..
Detecting Malicious Accounts in Web3 through Transaction Graph
2024-10-27
会议录名称PROCEEDINGS - 2024 39TH ACM/IEEE INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2024
ISSN1938-4300
页码2482-2483
发表状态已发表
DOI10.1145/3691620.3695344
摘要The web3 applications have recently been growing, especially on the Ethereum platform, starting to become the target of scammers. The web3 scams, imitating the services provided by legitimate platforms, mimic regular activity to deceive users. The current phishing account detection tools utilize graph learning or sampling algorithms to obtain graph features. However, large-scale transaction networks with temporal attributes conform to a power-law distribution, posing challenges in detecting web3 scams. In this paper, we present ScamSweeper, a novel framework to identify web3 scams on Ethereum. Furthermore, we collect a large-scale transaction dataset consisting of web3 scams, phishing, and normal accounts. Our experiments indicate that ScamSweeper exceeds the state-of-the-art in detecting web3 scams. © 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
会议录编者/会议主办者ACM ; ACM SIGAI ; Google ; IEEE ; Special Interest Group on Software Engineering (SIGSOFT) ; University of California, Davis (UC Davis)
关键词Anonymity 'current Deep learning Detection tools Graph features Large-scale transactions Malicious account Phishing Sampling algorithm Transaction graph Web3 scam
会议名称39th ACM/IEEE International Conference on Automated Software Engineering, ASE 2024
会议地点Sacramento, CA, United states
会议日期October 28, 2024 - November 1, 2024
URL查看原文
收录类别EI
语种英语
出版者Association for Computing Machinery, Inc
EI入藏号20245117563826
EI主题词Phishing
EI分类号1106.2 ; 1108.1 ; 902.3 Legal Aspects
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/461533
专题信息科学与技术学院_硕士生
通讯作者Li, Wenkai; Li, Xiaoqi
作者单位
1.Hainan University, Haikou, China;
2.ShanghaiTech University, Shanghai, China;
3.Keen Security Lab, Tencent, Shanghai, China
推荐引用方式
GB/T 7714
Li, Wenkai,Liu, Zhijie,Li, Xiaoqi,et al. Detecting Malicious Accounts in Web3 through Transaction Graph[C]//ACM, ACM SIGAI, Google, IEEE, Special Interest Group on Software Engineering (SIGSOFT), University of California, Davis (UC Davis):Association for Computing Machinery, Inc,2024:2482-2483.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Wenkai]的文章
[Liu, Zhijie]的文章
[Li, Xiaoqi]的文章
百度学术
百度学术中相似的文章
[Li, Wenkai]的文章
[Liu, Zhijie]的文章
[Li, Xiaoqi]的文章
必应学术
必应学术中相似的文章
[Li, Wenkai]的文章
[Liu, Zhijie]的文章
[Li, Xiaoqi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3691620.3695344.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。