| |||||||
ShanghaiTech University Knowledge Management System
SANet: similarity aggregation and semantic fusion for few-shot semantic segmentation | |
2025 | |
发表期刊 | APPLIED INTELLIGENCE (IF:3.4[JCR-2023],3.9[5-Year]) |
ISSN | 0924-669X |
EISSN | 1573-7497 |
卷号 | 55期号:2 |
发表状态 | 已发表 |
DOI | 10.1007/s10489-024-05986-x |
摘要 | Few-shot semantic segmentation (FSS) methods based on meta-learning strategies have shown promise in extracting instance knowledge from support set to infer pixel-wise labels in query set. However, a key challenge in FSS is addressing spatial inconsistency between query image and support image due to intra-class difference and inter-class similarity. Moreover, existing FSS methods often rely on multiple decoding methods for differentiated pixel-wise matching, leading to semantic inconsistency. To tackle these issues, we propose a similarity aggregation network (SANet), which effectively explores visual correspondence between support and query features while aligning semantic dimensions. Specifically, SANet introduces a mask attention module (MAM) to capture spatial relations between non-local attention features from support features and query features. Additionally, a similarity aggregation module (SAM) is proposed, which utilizes the multi-head attention mechanism and combines prior mask to calculate the aggregation similarity between each query pixel and all supporting pixels, thereby focusing the network on foreground areas. Finally, a feature fusion module (FFM) is used to adaptively fuse features at multiple scales and channels for accurate prediction. Extensive experiments on PASCAL-5i and COCO-20i demonstrate the efficiency and competitiveness of SANet. |
关键词 | Few-shot learning Few-shot segmentation Semantic segmentation Attention mechanism |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:001374149800009 |
出版者 | SPRINGER |
EI入藏号 | 20245017516437 |
EI主题词 | Semantic Segmentation |
EI分类号 | 1101.2 ; 1106.1.1 ; 1106.4 ; 1106.8 ; 903.2 Information Dissemination ; 903.3 Information Retrieval and Use |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/461488 |
专题 | 信息科学与技术学院 信息科学与技术学院_特聘教授组_张涛组 信息科学与技术学院_硕士生 |
通讯作者 | Zhang, Tao |
作者单位 | 1.Shanghai Tech Univ, Sch Informat Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Tech Phys, Dept Engn 1, 500 Yutian Rd, Shanghai 200083, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Ye, Minrui,Zhang, Tao. SANet: similarity aggregation and semantic fusion for few-shot semantic segmentation[J]. APPLIED INTELLIGENCE,2025,55(2). |
APA | Ye, Minrui,&Zhang, Tao.(2025).SANet: similarity aggregation and semantic fusion for few-shot semantic segmentation.APPLIED INTELLIGENCE,55(2). |
MLA | Ye, Minrui,et al."SANet: similarity aggregation and semantic fusion for few-shot semantic segmentation".APPLIED INTELLIGENCE 55.2(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ye, Minrui]的文章 |
[Zhang, Tao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ye, Minrui]的文章 |
[Zhang, Tao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ye, Minrui]的文章 |
[Zhang, Tao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。