消息
×
loading..
SANet: similarity aggregation and semantic fusion for few-shot semantic segmentation
2025
发表期刊APPLIED INTELLIGENCE (IF:3.4[JCR-2023],3.9[5-Year])
ISSN0924-669X
EISSN1573-7497
卷号55期号:2
发表状态已发表
DOI10.1007/s10489-024-05986-x
摘要

Few-shot semantic segmentation (FSS) methods based on meta-learning strategies have shown promise in extracting instance knowledge from support set to infer pixel-wise labels in query set. However, a key challenge in FSS is addressing spatial inconsistency between query image and support image due to intra-class difference and inter-class similarity. Moreover, existing FSS methods often rely on multiple decoding methods for differentiated pixel-wise matching, leading to semantic inconsistency. To tackle these issues, we propose a similarity aggregation network (SANet), which effectively explores visual correspondence between support and query features while aligning semantic dimensions. Specifically, SANet introduces a mask attention module (MAM) to capture spatial relations between non-local attention features from support features and query features. Additionally, a similarity aggregation module (SAM) is proposed, which utilizes the multi-head attention mechanism and combines prior mask to calculate the aggregation similarity between each query pixel and all supporting pixels, thereby focusing the network on foreground areas. Finally, a feature fusion module (FFM) is used to adaptively fuse features at multiple scales and channels for accurate prediction. Extensive experiments on PASCAL-5i and COCO-20i demonstrate the efficiency and competitiveness of SANet.

关键词Few-shot learning Few-shot segmentation Semantic segmentation Attention mechanism
URL查看原文
收录类别SCI ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001374149800009
出版者SPRINGER
EI入藏号20245017516437
EI主题词Semantic Segmentation
EI分类号1101.2 ; 1106.1.1 ; 1106.4 ; 1106.8 ; 903.2 Information Dissemination ; 903.3 Information Retrieval and Use
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/461488
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_张涛组
信息科学与技术学院_硕士生
通讯作者Zhang, Tao
作者单位
1.Shanghai Tech Univ, Sch Informat Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Tech Phys, Dept Engn 1, 500 Yutian Rd, Shanghai 200083, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Ye, Minrui,Zhang, Tao. SANet: similarity aggregation and semantic fusion for few-shot semantic segmentation[J]. APPLIED INTELLIGENCE,2025,55(2).
APA Ye, Minrui,&Zhang, Tao.(2025).SANet: similarity aggregation and semantic fusion for few-shot semantic segmentation.APPLIED INTELLIGENCE,55(2).
MLA Ye, Minrui,et al."SANet: similarity aggregation and semantic fusion for few-shot semantic segmentation".APPLIED INTELLIGENCE 55.2(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ye, Minrui]的文章
[Zhang, Tao]的文章
百度学术
百度学术中相似的文章
[Ye, Minrui]的文章
[Zhang, Tao]的文章
必应学术
必应学术中相似的文章
[Ye, Minrui]的文章
[Zhang, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。