MetaAD: Metabolism-Aware Anomaly Detection for Parkinson's Disease in 3D 18F-FDG PET
2024
会议录名称MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15002
发表状态已发表
DOI10.1007/978-3-031-72069-7_28
摘要The dopamine transporter (DAT) imaging such as C-11-CFT PET has shown significant superiority in diagnosing Parkinson's Disease (PD). However, most hospitals have no access to DAT imaging but instead turn to the commonly used F-18-FDG PET, which may not show major abnormalities of PD at visual analysis and thus hinder the performance of computer-aided diagnosis (CAD). To tackle this challenge, we propose a Metabolism-aware Anomaly Detection (MetaAD) framework to highlight abnormal metabolism cues of PD in F-18-FDG PET scans. MetaAD converts the input FDG image into a synthetic CFT image with healthy patterns, and then reconstructs the FDG image by a reversed modality mapping. The visual differences between the input and reconstructed images serve as indicators of PD metabolic anomalies. A dual-path training scheme is adopted to prompt the generators to learn an explicit normal data distribution via cyclic modality translation while enhancing their abilities to memorize healthy metabolic characteristics. The experiments reveal that MetaAD not only achieves superior performance in visual interpretability and anomaly detection for PD diagnosis, but also shows effectiveness in assisting supervised CAD methods. Our code is available at https://github.com/MedAIerHHL/MetaAD.
关键词Parkinson's disease Brain PET Unsupervised Anomaly Detection Cross-modality Synthesis
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Palmeraie Conf Ctr,Marrakesh,MOROCCO
会议日期OCT 06-10, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目National Natural Science Foundation of China["82394432","82394434","82272039","82021002","81971641"] ; STI 2030-Major Projects[2022ZD0211600]
WOS研究方向Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001342225800028
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/458347
专题生物医学工程学院
生物医学工程学院_PI研究组_王乾组
生物医学工程学院_硕士生
生物医学工程学院_硕士生
通讯作者Zuo, Chuantao; Wang, Qian
作者单位
1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
2.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China
3.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China
4.Fudan Univ, Huashan Hosp, PET Ctr, Dept Nucl Med, Shanghai, Peoples R China
5.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
第一作者单位生物医学工程学院;  上海科技大学
通讯作者单位生物医学工程学院;  上海科技大学
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Huang, Haolin,Shen, Zhenrong,Wang, Jing,et al. MetaAD: Metabolism-Aware Anomaly Detection for Parkinson's Disease in 3D 18F-FDG PET[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Haolin]的文章
[Shen, Zhenrong]的文章
[Wang, Jing]的文章
百度学术
百度学术中相似的文章
[Huang, Haolin]的文章
[Shen, Zhenrong]的文章
[Wang, Jing]的文章
必应学术
必应学术中相似的文章
[Huang, Haolin]的文章
[Shen, Zhenrong]的文章
[Wang, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。