UinTSeg: Unified Infant Brain Tissue Segmentation with Anatomy Delineation
2024
会议录名称MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15002
发表状态已发表
DOI10.1007/978-3-031-72069-7_46
摘要

Accurate brain tissue segmentation is a vital prerequisite for charting infant brain development and for diagnosing early brain disorders. However, due to inherently ongoing myelination and maturation, the intensity distributions of gray matter (GM) and white matter (WM) on T1-weighted (T1w) data undergo substantial variations in intensity from neonatal to 24 months. Especially at the ages around 6 months, the intensity distributions of GM and WM are highly overlapped. These physiological phenomena pose great challenges for automatic infant brain tissue segmentation, even for expert radiologists. To address these issues, in this study, we present a unified infant brain tissue segmentation (UinTSeg) framework to accurately segment brain tissues of infants aged 0-24 months using a single model. UinTSeg comprises two stages: 1) boundary extraction and 2) tissue segmentation. In the first stage, to alleviate the difficulty of tissue segmentation caused by variations in intensity, we extract the intensity-invariant tissue boundaries from T1w data driven by edge maps extracted from the Sobel filter. In the second stage, the Sobel edge maps and extracted boundaries of GM, WM, and cerebrospinal fluid (CSF) are utilized as intensity-invariant anatomy information to ensure unified and accurate tissue segmentation in infants age period of 0-24 months. Both stages are built upon an attentionbased surrounding-aware segmentation network (ASNet), which exploits the contextual information from multi-scale patches to improve the segmentation performance. Extensive experiments on the baby connectome project dataset demonstrate the superiority of our proposed framework over five state-of-the-art methods.

关键词Infant brain tissue segmentation Boundary delineation Multi-scale segmentation
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Palmeraie Conf Ctr,Marrakesh,MOROCCO
会议日期OCT 06-10, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001342225800046
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/458346
专题生物医学工程学院
物质科学与技术学院_特聘教授组_孙予罕组
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_孙开聪组
通讯作者Shen, Dinggang
作者单位
1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
2.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China
3.Northwest Univ, Sch Informat Sci & Technol, Xian, Peoples R China
4.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
5.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
6.Imperial Coll London, BASIRA Lab, Imperial X, London, England
7.Imperial Coll London, Dept Comp, London, England
第一作者单位生物医学工程学院;  上海科技大学
通讯作者单位生物医学工程学院;  上海科技大学
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Liu, Jiameng,Liu, Feihong,Sun, Kaicong,et al. UinTSeg: Unified Infant Brain Tissue Segmentation with Anatomy Delineation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Jiameng]的文章
[Liu, Feihong]的文章
[Sun, Kaicong]的文章
百度学术
百度学术中相似的文章
[Liu, Jiameng]的文章
[Liu, Feihong]的文章
[Sun, Kaicong]的文章
必应学术
必应学术中相似的文章
[Liu, Jiameng]的文章
[Liu, Feihong]的文章
[Sun, Kaicong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。