ShanghaiTech University Knowledge Management System
UinTSeg: Unified Infant Brain Tissue Segmentation with Anatomy Delineation | |
2024 | |
会议录名称 | MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 15002 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-72069-7_46 |
摘要 | Accurate brain tissue segmentation is a vital prerequisite for charting infant brain development and for diagnosing early brain disorders. However, due to inherently ongoing myelination and maturation, the intensity distributions of gray matter (GM) and white matter (WM) on T1-weighted (T1w) data undergo substantial variations in intensity from neonatal to 24 months. Especially at the ages around 6 months, the intensity distributions of GM and WM are highly overlapped. These physiological phenomena pose great challenges for automatic infant brain tissue segmentation, even for expert radiologists. To address these issues, in this study, we present a unified infant brain tissue segmentation (UinTSeg) framework to accurately segment brain tissues of infants aged 0-24 months using a single model. UinTSeg comprises two stages: 1) boundary extraction and 2) tissue segmentation. In the first stage, to alleviate the difficulty of tissue segmentation caused by variations in intensity, we extract the intensity-invariant tissue boundaries from T1w data driven by edge maps extracted from the Sobel filter. In the second stage, the Sobel edge maps and extracted boundaries of GM, WM, and cerebrospinal fluid (CSF) are utilized as intensity-invariant anatomy information to ensure unified and accurate tissue segmentation in infants age period of 0-24 months. Both stages are built upon an attentionbased surrounding-aware segmentation network (ASNet), which exploits the contextual information from multi-scale patches to improve the segmentation performance. Extensive experiments on the baby connectome project dataset demonstrate the superiority of our proposed framework over five state-of-the-art methods. |
关键词 | Infant brain tissue segmentation Boundary delineation Multi-scale segmentation |
会议名称 | 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Palmeraie Conf Ctr,Marrakesh,MOROCCO |
会议日期 | OCT 06-10, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001342225800046 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/458346 |
专题 | 生物医学工程学院 物质科学与技术学院_特聘教授组_孙予罕组 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_孙开聪组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China 3.Northwest Univ, Sch Informat Sci & Technol, Xian, Peoples R China 4.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China 5.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China 6.Imperial Coll London, BASIRA Lab, Imperial X, London, England 7.Imperial Coll London, Dept Comp, London, England |
第一作者单位 | 生物医学工程学院; 上海科技大学 |
通讯作者单位 | 生物医学工程学院; 上海科技大学 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Liu, Jiameng,Liu, Feihong,Sun, Kaicong,et al. UinTSeg: Unified Infant Brain Tissue Segmentation with Anatomy Delineation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。