Mixed Integer Linear Programming for Discrete Sampling Scheme Design in Diffusion MRI
2024
会议录名称MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15002
发表状态已发表
DOI10.1007/978-3-031-72069-7_30
摘要In diffusion MRI (dMRI), a uniform single or multiple shell sampling scheme is typically required for data acquisition in q-space, because uniform spherical sampling offers the advantage of capturing more information using fewer samples, leading to superior reconstruction results. Uniform sampling problems can be categorized into continuous and discrete types. While most existing sampling methods focus on the continuous problem that is to design spherical samples continuously from single or multiple shells, this paper primarily investigates two discrete optimization problems, i.e., 1) optimizing the polarity of an existing scheme (P-P), and 2) optimizing the ordering of an existing scheme (P-O). Existing approaches for these two problems mainly rely on greedy algorithms, simulated annealing, and exhaustive search, which fail to obtain global optima within a reasonable timeframe. We propose several Mixed Integer Linear Programming (MILP) based methods to address these problems. To the best of our knowledge, this is the first work that solves these two discrete problems using MILP to obtain global optimal or sufficiently good solutions in 10min. Experiments performed on single and multiple shells demonstrate that our MILP methods can achieve larger separation angles and lower electrostatic energy, resulting better reconstruction results, compared with existing approaches in commonly used software (i.e., CAMINO and MRtrix).
关键词Diffusion MRI Signal Sampling Signal Reconstruction Mixed Integer Linear Programming
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Palmeraie Conf Ctr,Marrakesh,MOROCCO
会议日期OCT 06-10, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目STI 2030-Major Projects[2022ZD0209000] ; National Natural Science Foundation of China[61971017]
WOS研究方向Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001342225800030
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/458345
专题生物医学工程学院
生物医学工程学院_PI研究组_张寒组
通讯作者Cheng, Jian
作者单位
1.Beihang Univ, State Key Lab Complex & Crit Software Environm CC, Beijing, Peoples R China
2.Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China
3.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
4.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Si-Miao,Wang, Jing,Wang, Yi-Xuan,et al. Mixed Integer Linear Programming for Discrete Sampling Scheme Design in Diffusion MRI[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Si-Miao]的文章
[Wang, Jing]的文章
[Wang, Yi-Xuan]的文章
百度学术
百度学术中相似的文章
[Zhang, Si-Miao]的文章
[Wang, Jing]的文章
[Wang, Yi-Xuan]的文章
必应学术
必应学术中相似的文章
[Zhang, Si-Miao]的文章
[Wang, Jing]的文章
[Wang, Yi-Xuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。