SPHINX: A Mixer of Weights, Visual Embeddings and Image Scales for Multi-modal Large Language Models
2025
会议录名称COMPUTER VISION - ECCV 2024, PT LXII (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15120
发表状态已发表
DOI10.1007/978-3-031-73033-7_3
摘要We present SPHINX, a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, visual embeddings and image scales. First, for stronger vision-language alignment, we unfreeze the large language model (LLM) during pre-training, and introduce a weight mix strategy between LLMs trained by real-world and synthetic data. By directly integrating the weights from two domains, the mixed LLM can efficiently incorporate diverse semantics with favorable robustness. Then, we propose to extract comprehensive visual embeddings from various network architectures, pre-training paradigms, and information granularity, providing language models with more robust image representations. We further propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images. With a mixing of different scales and high-resolution sub-images, SPHINX attains exceptional visual parsing and reasoning performance on existing evaluation benchmarks. Based on our proposed joint mixing, SPHINX exhibits superior multi-modal understanding capabilities on a wide range of applications, with highlighted fine-grained visual recognition abilities such as region-level understanding, caption grounding, document layout detection, and human pose estimation. We hope our work may cast a light on the exploration of joint mixing in future MLLM research. Code is released at https://github.com/Alpha-VLLM/LLaMA2-Accessory.
会议名称18th European Conference on Computer Vision (ECCV)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点null,Milan,ITALY
会议日期SEP 29-OCT 04, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目National Key R&D Program of China["2022ZD0161100","2022ZD0160102"] ; National Natural Science Foundation of China[62206272] ; Smart Traffic Fund[PSRI/76/2311/PR] ; RGC General Research Fund[14204021]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:001353685900003
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/458342
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_何旭明组
通讯作者Gao, Peng
作者单位
1.Chinese Univ Hong Kong, Multimedia Lab, Ma Liu Shui, Hong Kong, Peoples R China
2.Shanghai AI Lab, Shanghai, Peoples R China
3.ShanghaiTech Univ, Shanghai, Peoples R China
4.Ctr Perceptual & Interact Intelligence Ltd, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Lin, Ziyi,Liu, Dongyang,Zhang, Renrui,et al. SPHINX: A Mixer of Weights, Visual Embeddings and Image Scales for Multi-modal Large Language Models[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2025.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Ziyi]的文章
[Liu, Dongyang]的文章
[Zhang, Renrui]的文章
百度学术
百度学术中相似的文章
[Lin, Ziyi]的文章
[Liu, Dongyang]的文章
[Zhang, Renrui]的文章
必应学术
必应学术中相似的文章
[Lin, Ziyi]的文章
[Liu, Dongyang]的文章
[Zhang, Renrui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。