Federated Edge Learning for 6G: Foundations, Methodologies, and Applications
2024
发表期刊PROCEEDINGS OF THE IEEE (IF:23.2[JCR-2023],18.4[5-Year])
ISSN1558-2256
EISSN1558-2256
卷号PP期号:99
发表状态已发表
DOI10.1109/JPROC.2024.3509739
摘要

Artificial intelligence (AI) is envisioned to be natively integrated into the sixth-generation (6G) mobile networks to support a diverse range of intelligent applications. Federated edge learning (FEEL) emerges as a vital enabler of this vision by leveraging the sensing, communication, and computation capabilities of geographically dispersed edge devices to collaboratively train AI models without sharing raw data. This article explores the pivotal role of FEEL in advancing both the “wireless for AI” and “AI for wireless” paradigms, thereby facilitating the realization of scalable, adaptive, and intelligent 6G networks. We begin with a comprehensive overview of learning architectures, models, and algorithms that form the foundations of FEEL. We, then, establish a novel task-oriented communication principle to examine key methodologies for deploying FEEL in dynamic and resource-constrained wireless environments, focusing on device scheduling, model compression, model aggregation, and resource allocation. Furthermore, we investigate the domain-specific optimizations of FEEL to facilitate its promising applications, ranging from wireless air-interface technologies to mobile and the Internet of Things (IoT) services. Finally, we highlight key future research directions for enhancing the design and impact of FEEL in 6G.

关键词Resource allocation Diverse range Domain specific Domain-specific optimization Federated edge learning Integrated sensingacommunicationacomputation Intelligent applications Optimisations Sixth-generation (6g) Task-oriented Task-oriented communication
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20245217566273
EI主题词Mobile edge computing
EI分类号1105.1 ; 912.2 Management
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/457911
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
作者单位
1.Department of Electronic Engineering and Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, Shanghai, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
3.Huawei Technologies Company Ltd, Shenzhen, China
4.School of Science and Engineering (SSE), Shenzhen Future Network of Intelligence Institute (FNii-Shenzhen), and Guangdong Provincial Key Laboratory of Future Networks of Intelligence, The Chinese University of Hong Kong, Shenzhen, China
5.Department of Electronic Engineering and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
6.Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology (HKUST), Hong Kong, Hong Kong
推荐引用方式
GB/T 7714
Meixia Tao,Yong Zhou,Yuanming Shi,et al. Federated Edge Learning for 6G: Foundations, Methodologies, and Applications[J]. PROCEEDINGS OF THE IEEE,2024,PP(99).
APA Meixia Tao.,Yong Zhou.,Yuanming Shi.,Jianmin Lu.,Shuguang Cui.,...&Khaled B. Letaief.(2024).Federated Edge Learning for 6G: Foundations, Methodologies, and Applications.PROCEEDINGS OF THE IEEE,PP(99).
MLA Meixia Tao,et al."Federated Edge Learning for 6G: Foundations, Methodologies, and Applications".PROCEEDINGS OF THE IEEE PP.99(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Meixia Tao]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
百度学术
百度学术中相似的文章
[Meixia Tao]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
必应学术
必应学术中相似的文章
[Meixia Tao]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。