| |||||||
ShanghaiTech University Knowledge Management System
GeoFormer: Learning Point Cloud Completion with Tri-Plane Integrated Transformer | |
2024-10-28 | |
会议录名称 | MM 2024 - PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA |
页码 | 8952-8961 |
DOI | 10.1145/3664647.3680842 |
摘要 | Point cloud completion aims to recover accurate global geometry and preserve fine-grained local details from partial point clouds. Conventional methods typically predict unseen points directly from 3D point cloud coordinates or use self-projected multi-view depth maps to ease this task. However, these gray-scale depth maps cannot reach multi-view consistency, consequently restricting the performance. In this paper, we introduce a GeoFormer that simultaneously enhances the global geometric structure of the points and improves the local details. Specifically, we design a CCM Feature Enhanced Point Generator to integrate image features from multi-view consistent canonical coordinate maps (CCMs) and align them with pure point features, thereby enhancing the global geometry feature. Additionally, we employ the Multi-scale Geometry-aware Upsampler module to progressively enhance local details. This is achieved through cross attention between the multi-scale features extracted from the partial input and the features derived from previously estimated points. Extensive experiments on the PCN, ShapeNet-55/34, and KITTI benchmarks demonstrate that our GeoFormer outperforms recent methods, achieving the state-of-the-art performance. Our code is available at https://github.com/Jinpeng-Yu/GeoFormer. © 2024 Owner/Author. |
会议录编者/会议主办者 | ACM SIGMM |
关键词 | Canonical coordinate map Canonical coordinates Coordinate maps Depthmap Multi-scale geometry-aware Multi-scales Multi-view consistent Multi-views Point cloud completion Point-clouds |
会议名称 | 32nd ACM International Conference on Multimedia, MM 2024 |
会议地点 | Melbourne, VIC, Australia |
会议日期 | October 28, 2024 - November 1, 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computing Machinery, Inc |
EI入藏号 | 20244817416924 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/455187 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Gao, Shenghua |
作者单位 | 1.Xiaohongshu Inc., Shanghai, China; 2.ShanghaiTech University, Shanghai, China; 3.Shanghai Jiao Tong University, Shanghai, China; 4.The University of Hong Kong, Hong Kong, Hong Kong; 5.HKU Shanghai Advanced Computing and Intelligent Technology Research Institute, China |
第一作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yu, Jinpeng,Huang, Binbin,Zhang, Yuxuan,et al. GeoFormer: Learning Point Cloud Completion with Tri-Plane Integrated Transformer[C]//ACM SIGMM:Association for Computing Machinery, Inc,2024:8952-8961. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。