消息
×
loading..
GeoFormer: Learning Point Cloud Completion with Tri-Plane Integrated Transformer
2024-10-28
会议录名称MM 2024 - PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
页码8952-8961
DOI10.1145/3664647.3680842
摘要Point cloud completion aims to recover accurate global geometry and preserve fine-grained local details from partial point clouds. Conventional methods typically predict unseen points directly from 3D point cloud coordinates or use self-projected multi-view depth maps to ease this task. However, these gray-scale depth maps cannot reach multi-view consistency, consequently restricting the performance. In this paper, we introduce a GeoFormer that simultaneously enhances the global geometric structure of the points and improves the local details. Specifically, we design a CCM Feature Enhanced Point Generator to integrate image features from multi-view consistent canonical coordinate maps (CCMs) and align them with pure point features, thereby enhancing the global geometry feature. Additionally, we employ the Multi-scale Geometry-aware Upsampler module to progressively enhance local details. This is achieved through cross attention between the multi-scale features extracted from the partial input and the features derived from previously estimated points. Extensive experiments on the PCN, ShapeNet-55/34, and KITTI benchmarks demonstrate that our GeoFormer outperforms recent methods, achieving the state-of-the-art performance. Our code is available at https://github.com/Jinpeng-Yu/GeoFormer. © 2024 Owner/Author.
会议录编者/会议主办者ACM SIGMM
关键词Canonical coordinate map Canonical coordinates Coordinate maps Depthmap Multi-scale geometry-aware Multi-scales Multi-view consistent Multi-views Point cloud completion Point-clouds
会议名称32nd ACM International Conference on Multimedia, MM 2024
会议地点Melbourne, VIC, Australia
会议日期October 28, 2024 - November 1, 2024
URL查看原文
收录类别EI
语种英语
出版者Association for Computing Machinery, Inc
EI入藏号20244817416924
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/455187
专题信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Gao, Shenghua
作者单位
1.Xiaohongshu Inc., Shanghai, China;
2.ShanghaiTech University, Shanghai, China;
3.Shanghai Jiao Tong University, Shanghai, China;
4.The University of Hong Kong, Hong Kong, Hong Kong;
5.HKU Shanghai Advanced Computing and Intelligent Technology Research Institute, China
第一作者单位上海科技大学
推荐引用方式
GB/T 7714
Yu, Jinpeng,Huang, Binbin,Zhang, Yuxuan,et al. GeoFormer: Learning Point Cloud Completion with Tri-Plane Integrated Transformer[C]//ACM SIGMM:Association for Computing Machinery, Inc,2024:8952-8961.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yu, Jinpeng]的文章
[Huang, Binbin]的文章
[Zhang, Yuxuan]的文章
百度学术
百度学术中相似的文章
[Yu, Jinpeng]的文章
[Huang, Binbin]的文章
[Zhang, Yuxuan]的文章
必应学术
必应学术中相似的文章
[Yu, Jinpeng]的文章
[Huang, Binbin]的文章
[Zhang, Yuxuan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3664647.3680842.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。