ShanghaiTech University Knowledge Management System
Towards Practical Human Motion Prediction with LiDAR Point Clouds | |
2024-10-28 | |
会议录名称 | MM 2024 - PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA |
页码 | 7629-7638 |
发表状态 | 已发表 |
DOI | 10.1145/3664647.3680720 |
摘要 | Human motion prediction is crucial for human-centric multimedia understanding and interacting. Current methods typically rely on ground truth human poses as observed input, which is not practical for real-world scenarios where only raw visual sensor data is available. To implement these methods in practice, a pre-phrase of pose estimation is essential. However, such two-stage approaches often lead to performance degradation due to the accumulation of errors. Moreover, reducing raw visual data to sparse keypoint representations significantly diminishes the density of information, resulting in the loss of fine-grained features. In this paper, we propose LiDAR-HMP, the first single-LiDAR-based 3D human motion prediction approach, which receives the raw LiDAR point cloud as input and forecasts future 3D human poses directly. Building upon our novel structure-aware body feature descriptor, LiDAR-HMP adaptively maps the observed motion manifold to future poses and effectively models the spatial-temporal correlations of human motions for further refinement of prediction results. Extensive experiments show that our method achieves state-of-the-art performance on two public benchmarks and demonstrates remarkable robustness and efficacy in real-world deployments. https://4dvlab.github.io/project-page/LiDARHMP.html. © 2024 Owner/Author. |
会议录编者/会议主办者 | ACM SIGMM |
关键词 | Prediction models 'current Ground truth Human motion prediction Human motions Human pose Human-centric Lidar point clouds Motion prediction Multimedium understanding Point-clouds |
会议名称 | 32nd ACM International Conference on Multimedia, MM 2024 |
会议地点 | Melbourne, VIC, Australia |
会议日期 | October 28, 2024 - November 1, 2024 |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computing Machinery, Inc |
EI入藏号 | 20244817417370 |
EI主题词 | Motion estimation |
EI分类号 | 1101 ; 709 Electrical Engineering, General |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/455182 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_马月昕 |
通讯作者 | Ma, Yuexin |
作者单位 | 1.ShanghaiTech University, Shanghai, China; 2.The University of Hong Kong, Hong Kong, Hong Kong |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Han, Xiao,Ren, Yiming,Yao, Yichen,et al. Towards Practical Human Motion Prediction with LiDAR Point Clouds[C]//ACM SIGMM:Association for Computing Machinery, Inc,2024:7629-7638. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。