Towards Practical Human Motion Prediction with LiDAR Point Clouds
2024-10-28
会议录名称MM 2024 - PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
页码7629-7638
发表状态已发表
DOI10.1145/3664647.3680720
摘要

Human motion prediction is crucial for human-centric multimedia understanding and interacting. Current methods typically rely on ground truth human poses as observed input, which is not practical for real-world scenarios where only raw visual sensor data is available. To implement these methods in practice, a pre-phrase of pose estimation is essential. However, such two-stage approaches often lead to performance degradation due to the accumulation of errors. Moreover, reducing raw visual data to sparse keypoint representations significantly diminishes the density of information, resulting in the loss of fine-grained features. In this paper, we propose LiDAR-HMP, the first single-LiDAR-based 3D human motion prediction approach, which receives the raw LiDAR point cloud as input and forecasts future 3D human poses directly. Building upon our novel structure-aware body feature descriptor, LiDAR-HMP adaptively maps the observed motion manifold to future poses and effectively models the spatial-temporal correlations of human motions for further refinement of prediction results. Extensive experiments show that our method achieves state-of-the-art performance on two public benchmarks and demonstrates remarkable robustness and efficacy in real-world deployments. https://4dvlab.github.io/project-page/LiDARHMP.html. © 2024 Owner/Author.

会议录编者/会议主办者ACM SIGMM
关键词Prediction models 'current Ground truth Human motion prediction Human motions Human pose Human-centric Lidar point clouds Motion prediction Multimedium understanding Point-clouds
会议名称32nd ACM International Conference on Multimedia, MM 2024
会议地点Melbourne, VIC, Australia
会议日期October 28, 2024 - November 1, 2024
收录类别EI
语种英语
出版者Association for Computing Machinery, Inc
EI入藏号20244817417370
EI主题词Motion estimation
EI分类号1101 ; 709 Electrical Engineering, General
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/455182
专题信息科学与技术学院_博士生
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_马月昕
通讯作者Ma, Yuexin
作者单位
1.ShanghaiTech University, Shanghai, China;
2.The University of Hong Kong, Hong Kong, Hong Kong
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Han, Xiao,Ren, Yiming,Yao, Yichen,et al. Towards Practical Human Motion Prediction with LiDAR Point Clouds[C]//ACM SIGMM:Association for Computing Machinery, Inc,2024:7629-7638.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Han, Xiao]的文章
[Ren, Yiming]的文章
[Yao, Yichen]的文章
百度学术
百度学术中相似的文章
[Han, Xiao]的文章
[Ren, Yiming]的文章
[Yao, Yichen]的文章
必应学术
必应学术中相似的文章
[Han, Xiao]的文章
[Ren, Yiming]的文章
[Yao, Yichen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。