| |||||||
ShanghaiTech University Knowledge Management System
LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives | |
2024-12-19 | |
发表期刊 | ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year]) |
ISSN | 0730-0301 |
EISSN | 1557-7368 |
卷号 | 43期号:6 |
发表状态 | 已发表 |
DOI | 10.1145/3687762 |
摘要 | Large garages are ubiquitous yet intricate scenes that present unique challenges due to their monotonous colors, repetitive patterns, reflective surfaces, and transparent vehicle glass. Conventional Structure from Motion (SfM) methods for camera pose estimation and 3D reconstruction often fail in these environments due to poor correspondence construction. To address these challenges, we introduce LetsGo, a LiDAR-assisted Gaussian splatting framework for large-scale garage modeling and rendering. We develop a handheld scanner, Polar, equipped with IMU, LiDAR, and a fisheye camera, to facilitate accurate data acquisition. Using this Polar device, we present the GarageWorld dataset, consisting of eight expansive garage scenes with diverse geometric structures, which will be made publicly available for further research. Our approach demonstrates that LiDAR point clouds collected by the Polar device significantly enhance a suite of 3D Gaussian splatting algorithms for garage scene modeling and rendering. We introduce a novel depth regularizer that effectively eliminates floating artifacts in rendered images. Additionally, we propose a multi-resolution 3D Gaussian representation designed for Level-of-Detail (LOD) rendering. This includes adapted scaling factors for individual levels and a random-resolution-level training scheme to optimize the Gaussians across different resolutions. This representation enables efficient rendering of large-scale garage scenes on lightweight devices via a web-based renderer. Experimental results on our GarageWorld dataset, as well as on ScanNet++ and KITTI-360, demonstrate the superiority of our method in terms of rendering quality and resource efficiency. © 2024 Copyright held by the owner/author(s). |
关键词 | Flow visualization Gaussian distribution Gaussian noise (electronic) Geological surveys Large datasets Motion estimation Rendering (computer graphics) Three dimensional computer graphics 3d gaussian splatting Garage dataset Gaussians Large-scale garage modeling Large-scales Level-of-detail rendering LiDAR scanning Neural rendering Repetitive pattern Splatting |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2022YFF0902301] ; NSFC programs[61976138] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003] ; null[61977047] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | WOS:001367494200001 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20244817440167 |
EI主题词 | Garages (parking) |
EI分类号 | 1106.2 ; 1106.3 ; 1106.3.1 ; 1106.5 ; 1202.1 ; 1202.2 ; 301.1 ; 402.2 Public Buildings ; 405.3 Surveying ; 481.1 Geology ; 709 Electrical Engineering, General ; 716.1 Information Theory and Signal Processing ; 902.1 Engineering Graphics |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/455173 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_PI研究组_师玉娇组 |
共同第一作者 | Cao, Junming; Zhao, Fuqiang |
通讯作者 | Shi, Yujiao; Yu, Jingyi |
作者单位 | 1.ShanghaiTech University, Shanghai, China; 2.Stereye Inc., Shanghai, China; 3.University of Chinese Academy of Sciences, Beijing, China; 4.NeuDim Inc., Shanghai, China; 5.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China; 6.DGene Inc., Shanghai, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Cui, Jiadi,Cao, Junming,Zhao, Fuqiang,et al. LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives[J]. ACM TRANSACTIONS ON GRAPHICS,2024,43(6). |
APA | Cui, Jiadi.,Cao, Junming.,Zhao, Fuqiang.,He, Zhipeng.,Chen, Yifan.,...&Yu, Jingyi.(2024).LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives.ACM TRANSACTIONS ON GRAPHICS,43(6). |
MLA | Cui, Jiadi,et al."LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives".ACM TRANSACTIONS ON GRAPHICS 43.6(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。