消息
×
loading..
LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives
2024-12-19
发表期刊ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year])
ISSN0730-0301
EISSN1557-7368
卷号43期号:6
发表状态已发表
DOI10.1145/3687762
摘要

Large garages are ubiquitous yet intricate scenes that present unique challenges due to their monotonous colors, repetitive patterns, reflective surfaces, and transparent vehicle glass. Conventional Structure from Motion (SfM) methods for camera pose estimation and 3D reconstruction often fail in these environments due to poor correspondence construction. To address these challenges, we introduce LetsGo, a LiDAR-assisted Gaussian splatting framework for large-scale garage modeling and rendering. We develop a handheld scanner, Polar, equipped with IMU, LiDAR, and a fisheye camera, to facilitate accurate data acquisition. Using this Polar device, we present the GarageWorld dataset, consisting of eight expansive garage scenes with diverse geometric structures, which will be made publicly available for further research. Our approach demonstrates that LiDAR point clouds collected by the Polar device significantly enhance a suite of 3D Gaussian splatting algorithms for garage scene modeling and rendering. We introduce a novel depth regularizer that effectively eliminates floating artifacts in rendered images. Additionally, we propose a multi-resolution 3D Gaussian representation designed for Level-of-Detail (LOD) rendering. This includes adapted scaling factors for individual levels and a random-resolution-level training scheme to optimize the Gaussians across different resolutions. This representation enables efficient rendering of large-scale garage scenes on lightweight devices via a web-based renderer. Experimental results on our GarageWorld dataset, as well as on ScanNet++ and KITTI-360, demonstrate the superiority of our method in terms of rendering quality and resource efficiency. © 2024 Copyright held by the owner/author(s).

关键词Flow visualization Gaussian distribution Gaussian noise (electronic) Geological surveys Large datasets Motion estimation Rendering (computer graphics) Three dimensional computer graphics 3d gaussian splatting Garage dataset Gaussians Large-scale garage modeling Large-scales Level-of-detail rendering LiDAR scanning Neural rendering Repetitive pattern Splatting
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key R&D Program of China[2022YFF0902301] ; NSFC programs[61976138] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003] ; null[61977047]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001367494200001
出版者Association for Computing Machinery
EI入藏号20244817440167
EI主题词Garages (parking)
EI分类号1106.2 ; 1106.3 ; 1106.3.1 ; 1106.5 ; 1202.1 ; 1202.2 ; 301.1 ; 402.2 Public Buildings ; 405.3 Surveying ; 481.1 Geology ; 709 Electrical Engineering, General ; 716.1 Information Theory and Signal Processing ; 902.1 Engineering Graphics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/455173
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_许岚组
信息科学与技术学院_PI研究组_师玉娇组
共同第一作者Cao, Junming; Zhao, Fuqiang
通讯作者Shi, Yujiao; Yu, Jingyi
作者单位
1.ShanghaiTech University, Shanghai, China;
2.Stereye Inc., Shanghai, China;
3.University of Chinese Academy of Sciences, Beijing, China;
4.NeuDim Inc., Shanghai, China;
5.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China;
6.DGene Inc., Shanghai, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Cui, Jiadi,Cao, Junming,Zhao, Fuqiang,et al. LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives[J]. ACM TRANSACTIONS ON GRAPHICS,2024,43(6).
APA Cui, Jiadi.,Cao, Junming.,Zhao, Fuqiang.,He, Zhipeng.,Chen, Yifan.,...&Yu, Jingyi.(2024).LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives.ACM TRANSACTIONS ON GRAPHICS,43(6).
MLA Cui, Jiadi,et al."LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives".ACM TRANSACTIONS ON GRAPHICS 43.6(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cui, Jiadi]的文章
[Cao, Junming]的文章
[Zhao, Fuqiang]的文章
百度学术
百度学术中相似的文章
[Cui, Jiadi]的文章
[Cao, Junming]的文章
[Zhao, Fuqiang]的文章
必应学术
必应学术中相似的文章
[Cui, Jiadi]的文章
[Cao, Junming]的文章
[Zhao, Fuqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。