消息
×
loading..
Efficient Wireless Federated Learning Via Low-Rank Gradient Factorization
2024
发表期刊IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (IF:6.1[JCR-2023],6.5[5-Year])
ISSN1939-9359
EISSN1939-9359
卷号PP期号:99
发表状态已发表
DOI10.1109/TVT.2024.3506950
摘要

This paper presents a novel gradient compression method for federated learning (FL) in wireless systems. The proposed method centers on a low-rank matrix factorization strategy for local gradient compression that is based on one iteration of a distributed Jacobi successive convex approximation (SCA) at each FL round. The low-rank approximation obtained at one round is used as a “warm start” initialization for Jacobi SCA in the next FL round. A new protocol termed over-the-air low-rank compression (Ota-LC) incorporating this gradient compression method with over-the-air computation and error feedback is shown to have lower computation cost and lower communication overhead, while guaranteeing the same inference performance, as compared with existing benchmarks. As an example, when targeting a test accuracy of 70% on the Cifar-10 dataset, Ota-LC reduces total communication costs by at least 33% compared to benchmark schemes.

关键词Benchmarking Iterative methods Jacobian matrices Compression methods Gradient factorization Low rank compression Low-rank matrices Matrix factorizations Over the airs Over-the-air computation Successive convex approximations Wireless federated learning Wireless systems
URL查看原文
收录类别SCI ; EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20244917493410
EI主题词Matrix factorization
EI分类号1106.6 ; 1201.2 ; 1201.9 ; 913.3 Quality Assurance and Control
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/452406
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_文鼎柱组
作者单位
1.School of Information Science and Technology, ShanghaiTech University, China
2.School of Computing Science, University of Glasgow, U.K.
3.King's Communications, Learning & Information Processing (KCLIP) lab, Centre for Intelligent Information Processing Systems (CIIPS), Department of Engineering, King's College London, London, U.K.
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Mingzhao Guo,Dongzhu Liu,Osvaldo Simeone,et al. Efficient Wireless Federated Learning Via Low-Rank Gradient Factorization[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2024,PP(99).
APA Mingzhao Guo,Dongzhu Liu,Osvaldo Simeone,&Dingzhu Wen.(2024).Efficient Wireless Federated Learning Via Low-Rank Gradient Factorization.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,PP(99).
MLA Mingzhao Guo,et al."Efficient Wireless Federated Learning Via Low-Rank Gradient Factorization".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY PP.99(2024).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Mingzhao Guo]的文章
[Dongzhu Liu]的文章
[Osvaldo Simeone]的文章
百度学术
百度学术中相似的文章
[Mingzhao Guo]的文章
[Dongzhu Liu]的文章
[Osvaldo Simeone]的文章
必应学术
必应学术中相似的文章
[Mingzhao Guo]的文章
[Dongzhu Liu]的文章
[Osvaldo Simeone]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TVT.2024.3506950.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。