ShanghaiTech University Knowledge Management System
A Graph-Embedded Latent Space Learning and Clustering Framework for Incomplete Multimodal Multiclass Alzheimer's Disease Diagnosis | |
2024 | |
会议录名称 | MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 15007 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-72104-5_5 |
摘要 | Alzheimer's disease (AD) is an irreversible neurodegenerative disease, where early diagnosis is crucial for improving prognosis and delaying the progression of the disease. Leveraging multimodal PET images, which can reflect various biomarkers like A beta and tau protein, is a promising method for AD diagnosis. However, due to the high cost and practical issues of PET imaging, it often faces challenges with incomplete multimodal data. To address this dilemma, in this paper, we propose a Graph-embedded latent Space Learning and Clustering framework, named Graph-SLC, for multiclass AD diagnosis under incomplete multimodal data scenarios. The key concept is leveraging all available subjects, including those with incomplete modality data, to train a network for projecting subjects into their latent representations. These latent representations not only exploit the complementarity of different modalities but also showcase separability among different classes. Specifically, our Graph-SLC consists of three modules, i.e., a multimodal reconstruction module, a subject-similarity graph embedding module, and an AD-oriented latent clustering module. Among them, the multimodal reconstruction module generates subject-specific latent representations that can comprehensively incorporate information from different modalities with guidance from all available modalities. The subject-similarity graph embedding module then enhances the discriminability of different latent representations by ensuring the neighborhood relationships between subjects are preserved in subject-specific latent representations. The ADoriented latent clustering module facilitates the separability of multiple classes by constraining subject-specific latent representations within the same class to be in the same cluster. Experiments on the ADNI show that our method achieves state-of-the-art performance in multiclass AD diagnosis. Our code is available at https://github.com/Ouzaixin/GraphSLC. |
关键词 | Alzheimer's Disease Incomplete Multimodal Learning Graph Embedding Latent Space Clustering |
会议名称 | 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Palmeraie Conf Ctr,Marrakesh,MOROCCO |
会议日期 | OCT 06-10, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62131015","62250710165","U23A20295","2022ZD0209000"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"] |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001342232700005 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/452391 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_崔智铭组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China 2.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai 201210, Peoples R China 3.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200232, Peoples R China 4.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China |
第一作者单位 | 生物医学工程学院; 上海科技大学 |
通讯作者单位 | 生物医学工程学院; 上海科技大学 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Ou, Zaixin,Jiang, Caiwen,Liu, Yuxiao,et al. A Graph-Embedded Latent Space Learning and Clustering Framework for Incomplete Multimodal Multiclass Alzheimer's Disease Diagnosis[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。