ShanghaiTech University Knowledge Management System
Zero-Shot Low-Field MRI Enhancement via Denoising Diffusion Driven Neural Representation | |
2024-10-03 | |
会议录名称 | MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION -- MICCAI 2024 |
ISSN | 0302-9743 |
卷号 | 15007 LNCS |
页码 | 775--785 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-72104-5_74 |
摘要 | Recently, there have been significant advancements in the development of portable low-field (LF) magnetic resonance imaging (MRI) systems. These systems aim to provide low-cost, unshielded, and bedside diagnostic solutions. MRI experiences a diminished signal-to-noise ratio (SNR) at reduced field strengths, which results in severe signal deterioration and poor reconstruction. Therefore, reconstructing a high-field-equivalent image from a low-field MRI is a complex challenge due to the ill-posed nature of the task. In this paper, we introduce diffusion model driven neural representation. We decompose the low-field MRI enhancement problem into a data consistency subproblem and a prior subproblem and solve them in an iterative framework. The diffusion model provides high-quality high-field (HF) MR images prior, while the implicit neural representation ensures data consistency. Experimental results on simulated LF data and clinical LF data indicate that our proposed method is capable of achieving zero-shot LF MRI enhancement, showing some potential for clinical applications. |
关键词 | Diffusion models Low-field MRI Implicit neural representation |
会议名称 | 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Palmeraie Conf Ctr,Marrakesh,MOROCCO |
会议日期 | OCT 06-10, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62071299] |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001342232700074 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/452350 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_张玉瑶组 |
共同第一作者 | Zhang, Yuyao |
通讯作者 | Wei, Hongjiang |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Lin, Xiyue,Du, Chenhe,Wu, Qing,et al. Zero-Shot Low-Field MRI Enhancement via Denoising Diffusion Driven Neural Representation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024:775--785. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lin, Xiyue]的文章 |
[Du, Chenhe]的文章 |
[Wu, Qing]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lin, Xiyue]的文章 |
[Du, Chenhe]的文章 |
[Wu, Qing]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lin, Xiyue]的文章 |
[Du, Chenhe]的文章 |
[Wu, Qing]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。