Zero-Shot Low-Field MRI Enhancement via Denoising Diffusion Driven Neural Representation
2024-10-03
会议录名称MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION -- MICCAI 2024
ISSN0302-9743
卷号15007 LNCS
页码775--785
发表状态已发表
DOI10.1007/978-3-031-72104-5_74
摘要

Recently, there have been significant advancements in the development of portable low-field (LF) magnetic resonance imaging (MRI) systems. These systems aim to provide low-cost, unshielded, and bedside diagnostic solutions. MRI experiences a diminished signal-to-noise ratio (SNR) at reduced field strengths, which results in severe signal deterioration and poor reconstruction. Therefore, reconstructing a high-field-equivalent image from a low-field MRI is a complex challenge due to the ill-posed nature of the task. In this paper, we introduce diffusion model driven neural representation. We decompose the low-field MRI enhancement problem into a data consistency subproblem and a prior subproblem and solve them in an iterative framework. The diffusion model provides high-quality high-field (HF) MR images prior, while the implicit neural representation ensures data consistency. Experimental results on simulated LF data and clinical LF data indicate that our proposed method is capable of achieving zero-shot LF MRI enhancement, showing some potential for clinical applications.

关键词Diffusion models Low-field MRI Implicit neural representation
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Palmeraie Conf Ctr,Marrakesh,MOROCCO
会议日期OCT 06-10, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[62071299]
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001342232700074
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/452350
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_张玉瑶组
共同第一作者Zhang, Yuyao
通讯作者Wei, Hongjiang
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lin, Xiyue,Du, Chenhe,Wu, Qing,et al. Zero-Shot Low-Field MRI Enhancement via Denoising Diffusion Driven Neural Representation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024:775--785.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Xiyue]的文章
[Du, Chenhe]的文章
[Wu, Qing]的文章
百度学术
百度学术中相似的文章
[Lin, Xiyue]的文章
[Du, Chenhe]的文章
[Wu, Qing]的文章
必应学术
必应学术中相似的文章
[Lin, Xiyue]的文章
[Du, Chenhe]的文章
[Wu, Qing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。