消息
×
loading..
Rethinking Fetal Brain Atlas Construction: A Deep Learning Perspective
2025
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14747 LNCS
页码94-104
发表状态已发表
DOI10.1007/978-3-031-73260-7_9
摘要Atlas construction is a crucial task for the analysis of fetal brain magnetic resonance imaging (MRI). Traditional registration-based methods for atlas construction may suffer from issues such as inaccurate registration and difficulty in defining morphology and geometric information. To address these challenges, we propose a novel deep learning-based approach for fetal brain atlas construction, which can replace traditional registration-based methods. Our fundamental assumption is that, in the feature space, the atlas is positioned at the center of a group of images, with the minimum distance to all images. Our approach utilizes the powerful representation ability of deep learning methods to learn the complex anatomical structure of the brain at multiple scales, by introducing a distance loss function to minimize the sum of distances between the atlas and all images in the group. We further utilize tissue maps as a structural guide to constrain our results, making them more physiologically realistic. To the best of our knowledge, we are the first to construct fetal brain atlases with powerful deep learning techniques. Our experiments on a large-scale fetal brain MRI dataset demonstrate that our approach can construct fetal brain atlases with better performance than previous registration-based methods while avoiding their limitations. Our code is publicly available at https://github.com/ZhangKai47/FetalBrainAtlas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
关键词Brain Contrastive Learning Deep learning Image registration Medical imaging Atlas construction Brain atlas Deep learning Feature space Fetal brain Geometric information Learn+ Learning methods Learning-based approach Minimums distance
会议名称9th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2024, held in Conjunction with the 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Marrakesh, Morocco
会议日期October 6, 2024 - October 6, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China["62131015","62250710165","U23A20295","2022ZD0209000"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"]
WOS研究方向Computer Science ; Neurosciences & Neurology ; Obstetrics & Gynecology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Neuroimaging ; Obstetrics & Gynecology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001437147800009
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20244417277456
EI主题词Magnetic resonance imaging
EISSN1611-3349
EI分类号101.1 ; 1101.2 ; 1101.2.1 ; 1106.3.1 ; 709 Electrical Engineering, General ; 746 Imaging Techniques
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449160
专题信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
通讯作者Chen, Geng; Shen, Dinggang
作者单位
1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China
2.Department of Radiology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou; 310006, China
3.National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an; 710072, China
4.Shanghai United Imaging Intelligence Co., Ltd., Shanghai; 200230, China
5.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhang, Kai,Huang, Shijie,Zhu, Fangmei,et al. Rethinking Fetal Brain Atlas Construction: A Deep Learning Perspective[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:94-104.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Kai]的文章
[Huang, Shijie]的文章
[Zhu, Fangmei]的文章
百度学术
百度学术中相似的文章
[Zhang, Kai]的文章
[Huang, Shijie]的文章
[Zhu, Fangmei]的文章
必应学术
必应学术中相似的文章
[Zhang, Kai]的文章
[Huang, Shijie]的文章
[Zhu, Fangmei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。