| |||||||
ShanghaiTech University Knowledge Management System
Rethinking Fetal Brain Atlas Construction: A Deep Learning Perspective | |
2025 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 14747 LNCS |
页码 | 94-104 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-73260-7_9 |
摘要 | Atlas construction is a crucial task for the analysis of fetal brain magnetic resonance imaging (MRI). Traditional registration-based methods for atlas construction may suffer from issues such as inaccurate registration and difficulty in defining morphology and geometric information. To address these challenges, we propose a novel deep learning-based approach for fetal brain atlas construction, which can replace traditional registration-based methods. Our fundamental assumption is that, in the feature space, the atlas is positioned at the center of a group of images, with the minimum distance to all images. Our approach utilizes the powerful representation ability of deep learning methods to learn the complex anatomical structure of the brain at multiple scales, by introducing a distance loss function to minimize the sum of distances between the atlas and all images in the group. We further utilize tissue maps as a structural guide to constrain our results, making them more physiologically realistic. To the best of our knowledge, we are the first to construct fetal brain atlases with powerful deep learning techniques. Our experiments on a large-scale fetal brain MRI dataset demonstrate that our approach can construct fetal brain atlases with better performance than previous registration-based methods while avoiding their limitations. Our code is publicly available at https://github.com/ZhangKai47/FetalBrainAtlas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. |
关键词 | Brain Contrastive Learning Deep learning Image registration Medical imaging Atlas construction Brain atlas Deep learning Feature space Fetal brain Geometric information Learn+ Learning methods Learning-based approach Minimums distance |
会议名称 | 9th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2024, held in Conjunction with the 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Marrakesh, Morocco |
会议日期 | October 6, 2024 - October 6, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62131015","62250710165","U23A20295","2022ZD0209000"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"] |
WOS研究方向 | Computer Science ; Neurosciences & Neurology ; Obstetrics & Gynecology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Neuroimaging ; Obstetrics & Gynecology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001437147800009 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20244417277456 |
EI主题词 | Magnetic resonance imaging |
EISSN | 1611-3349 |
EI分类号 | 101.1 ; 1101.2 ; 1101.2.1 ; 1106.3.1 ; 709 Electrical Engineering, General ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449160 |
专题 | 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Chen, Geng; Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China 2.Department of Radiology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou; 310006, China 3.National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an; 710072, China 4.Shanghai United Imaging Intelligence Co., Ltd., Shanghai; 200230, China 5.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhang, Kai,Huang, Shijie,Zhu, Fangmei,et al. Rethinking Fetal Brain Atlas Construction: A Deep Learning Perspective[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:94-104. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。