消息
×
loading..
Integrating Convolutional Neural Network and Transformer for Lumen Prediction Along the Aorta Sections
2025
会议录名称MACHINE LEARNING IN MEDICAL IMAGING: 15TH INTERNATIONAL WORKSHOP, MLMI 2024, HELD IN CONJUNCTION WITH MICCAI 2024, MARRAKESH, MOROCCO, OCTOBER 6, 2024, PROCEEDINGS, PART I (LNCS, VOL. 15241)
ISSN0302-9743
卷号15241 LNCS
页码340-349
发表状态已发表
DOI10.1007/978-3-031-73284-3_34
摘要

Aortic dissection is defined as a separation of layers of the aortic wall leading high mortality. Accurately segmenting both the true and false lumens is critical for revealing geometrical characteristics for diagnosis and evaluation of the dissection. Existing aortic dissection segmentation methods are mainly convolutional neural network (CNN)-based and are limited in precisely distinguishing these lumens due to lack of long-range dependencies along the aorta. To address this issue, we propose an integrated CNN and transformer prediction network (ICTP-Net) to capture both low-level spatial details and long-range global dependencies. Rather than a simple concatenation and fusion, an attention fusion (AF) block is employed to merge features from two branches. Additionally, due to the vascular anatomy, the proposed network is trained and applied in a sliding-context-dependent manner where we use partial previous segmentation for the prediction of the next section, further enhancing the spatial continuity along the aorta. 726 data samples were used in the experiments, and comparative and ablation studies show that the proposed ICTP-Net achieves the best aortic dissection true lumen segmentation compared with other state-of-the-art methods, demonstrating the effectiveness of the model integration, AF module and the sliding-context-dependent design. 

会议举办国Morocco
关键词Aortic dissection Image segmentation Aortic dissection segmentation CT angiography Convolutional neural network Transformer Context dependent Multilayer neural networks Geometrical characteristics
会议名称15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Marrakesh, Morocco
会议日期October 6, 2024 - October 6, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001424557900034
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20244517332459
EI主题词Convolutional neural networks
EISSN1611-3349
EI分类号102.1 ; 103 ; 1101 ; 1101.2.1 ; 1106.3.1
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449158
专题信息科学与技术学院
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
信息科学与技术学院_PI研究组_蔡夕然组
通讯作者Shen, Dinggang
作者单位
1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
2.Department of Research and Development, United Imaging Intelligence, Shanghai, China
3.Shanghai Clinical Research and Trial Center, Shanghai, China
4.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位上海科技大学;  信息科学与技术学院
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yang, Yichen,Jiang, Pengbo,Cai, Xiran,et al. Integrating Convolutional Neural Network and Transformer for Lumen Prediction Along the Aorta Sections[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:340-349.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Yichen]的文章
[Jiang, Pengbo]的文章
[Cai, Xiran]的文章
百度学术
百度学术中相似的文章
[Yang, Yichen]的文章
[Jiang, Pengbo]的文章
[Cai, Xiran]的文章
必应学术
必应学术中相似的文章
[Yang, Yichen]的文章
[Jiang, Pengbo]的文章
[Cai, Xiran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。