| |||||||
ShanghaiTech University Knowledge Management System
Integrating Convolutional Neural Network and Transformer for Lumen Prediction Along the Aorta Sections | |
2025 | |
会议录名称 | MACHINE LEARNING IN MEDICAL IMAGING: 15TH INTERNATIONAL WORKSHOP, MLMI 2024, HELD IN CONJUNCTION WITH MICCAI 2024, MARRAKESH, MOROCCO, OCTOBER 6, 2024, PROCEEDINGS, PART I (LNCS, VOL. 15241)
![]() |
ISSN | 0302-9743 |
卷号 | 15241 LNCS |
页码 | 340-349 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-73284-3_34 |
摘要 | Aortic dissection is defined as a separation of layers of the aortic wall leading high mortality. Accurately segmenting both the true and false lumens is critical for revealing geometrical characteristics for diagnosis and evaluation of the dissection. Existing aortic dissection segmentation methods are mainly convolutional neural network (CNN)-based and are limited in precisely distinguishing these lumens due to lack of long-range dependencies along the aorta. To address this issue, we propose an integrated CNN and transformer prediction network (ICTP-Net) to capture both low-level spatial details and long-range global dependencies. Rather than a simple concatenation and fusion, an attention fusion (AF) block is employed to merge features from two branches. Additionally, due to the vascular anatomy, the proposed network is trained and applied in a sliding-context-dependent manner where we use partial previous segmentation for the prediction of the next section, further enhancing the spatial continuity along the aorta. 726 data samples were used in the experiments, and comparative and ablation studies show that the proposed ICTP-Net achieves the best aortic dissection true lumen segmentation compared with other state-of-the-art methods, demonstrating the effectiveness of the model integration, AF module and the sliding-context-dependent design. |
会议举办国 | Morocco |
关键词 | Aortic dissection Image segmentation Aortic dissection segmentation CT angiography Convolutional neural network Transformer Context dependent Multilayer neural networks Geometrical characteristics |
会议名称 | 15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Marrakesh, Morocco |
会议日期 | October 6, 2024 - October 6, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001424557900034 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20244517332459 |
EI主题词 | Convolutional neural networks |
EISSN | 1611-3349 |
EI分类号 | 102.1 ; 103 ; 1101 ; 1101.2.1 ; 1106.3.1 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449158 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_沈定刚组 信息科学与技术学院_PI研究组_蔡夕然组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China 2.Department of Research and Development, United Imaging Intelligence, Shanghai, China 3.Shanghai Clinical Research and Trial Center, Shanghai, China 4.School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 上海科技大学; 信息科学与技术学院 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yang, Yichen,Jiang, Pengbo,Cai, Xiran,et al. Integrating Convolutional Neural Network and Transformer for Lumen Prediction Along the Aorta Sections[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:340-349. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。