SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images
2025
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号15242 LNCS
页码191-200
发表状态已发表
DOI10.1007/978-3-031-73290-4_19
摘要

Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

关键词Computerized tomography Deep learning Gaussian distribution Image fusion Image segmentation Lung cancer Anchor-free Anchor-free object detection CT Image Deep learning Detection networks Effective learning Features fusions Lymph node Lymph node detections Objects detection
会议名称15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Marrakesh, Morocco
会议日期October 6, 2024 - October 6, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001424559300019
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20244617347247
EI主题词Contrastive Learning
EISSN1611-3349
EI分类号102.1.1 ; 1101.2 ; 1101.2.1 ; 1106.3.1 ; 1202.1 ; 1202.2 ; 746 Imaging Techniques
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449157
专题信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China
2.Department of Research and Development, United Imaging Intelligence, Shanghai; 200230, China
3.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Xiong, Jiuli,Mei, Lanzhuju,J., Liu,et al. SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:191-200.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiong, Jiuli]的文章
[Mei, Lanzhuju]的文章
[J., Liu]的文章
百度学术
百度学术中相似的文章
[Xiong, Jiuli]的文章
[Mei, Lanzhuju]的文章
[J., Liu]的文章
必应学术
必应学术中相似的文章
[Xiong, Jiuli]的文章
[Mei, Lanzhuju]的文章
[J., Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。