ShanghaiTech University Knowledge Management System
SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images | |
2025 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 15242 LNCS |
页码 | 191-200 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-73290-4_19 |
摘要 | Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. |
关键词 | Computerized tomography Deep learning Gaussian distribution Image fusion Image segmentation Lung cancer Anchor-free Anchor-free object detection CT Image Deep learning Detection networks Effective learning Features fusions Lymph node Lymph node detections Objects detection |
会议名称 | 15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Marrakesh, Morocco |
会议日期 | October 6, 2024 - October 6, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001424559300019 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20244617347247 |
EI主题词 | Contrastive Learning |
EISSN | 1611-3349 |
EI分类号 | 102.1.1 ; 1101.2 ; 1101.2.1 ; 1106.3.1 ; 1202.1 ; 1202.2 ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449157 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China 2.Department of Research and Development, United Imaging Intelligence, Shanghai; 200230, China 3.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xiong, Jiuli,Mei, Lanzhuju,J., Liu,et al. SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:191-200. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。