ShanghaiTech University Knowledge Management System
Clinical Brain MRI Super-Resolution with 2D Slice-Wise Diffusion Model | |
2025 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 15241 LNCS |
页码 | 166-176 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-73284-3_17 |
摘要 | Magnetic resonance imaging (MRI) plays a vital role in brain imaging, offering exceptional soft tissue contrast without the use of ionizing radiation, ensuring safe and effective medical diagnosis. In clinic settings, 2D acquisitions are preferred by physicians due to fewer slices, large spacing, and high in-plane resolution, balancing spatial resolution, signal-to-noise ratio (SNR), 0 and acquisition time. However, these MR images may lack through-plane resolution, which may hinder lesion detection, tissue segmentation, accurate volumetric measurements, and cortical reconstruction. Most existing deep learning methods are built with purely synthetic data by collecting only high-resolution images, creating a gap between synthetic data and real-world paired data. To address these issues, we propose a slice-wise framework using a diffusion model for inter-slice super-resolution of brain MR images: 1) Employ a real-world coarse super-resolution model for initial prediction; 2) Use a score-based diffusion model for detailed iterative refinement; 3) Leverage total variation (TV) penalty with a plug-and-play (PnP) optimization module for enhanced consistency. We validate our method on over 450 real paired cases, demonstrating that our method could generate realistic images with satisfactory 3D consistency and significantly reduce over-smooth problems, thereby improving current data quality. This 2D slice-wise diffusion model also provides an effective solution for improving the quality of brain MRI images in real-world scenarios. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. |
关键词 | Bioinformatics Brain mapping Deep learning Diffusion tensor imaging Electroencephalography Image segmentation 2-D slice Brain imaging Brain magnetic resonance imaging Diffusion model Plug-and-play Real-world Soft tissue Spatial resolution Superresolution Synthetic data |
会议名称 | 15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Marrakesh, Morocco |
会议日期 | October 6, 2024 - October 6, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Key Technologies R&D Program of China[82027808] ; National Natural Science Foundation of China["62131015","U23A20295"] |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001424557900017 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20244517332442 |
EI主题词 | Magnetic resonance imaging |
EISSN | 1611-3349 |
EI分类号 | 101.1 ; 101.7.2 ; 102.1 ; 1101.2.1 ; 1106.3.1 ; 709 Electrical Engineering, General ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449156 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Shi, Feng; Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China 2.Department of Research and Development, United Imaging Intelligence Co., Ltd., Shanghai; 200232, China 3.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wang, Runqi,Cao, Zehong,He, Yichu,et al. Clinical Brain MRI Super-Resolution with 2D Slice-Wise Diffusion Model[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:166-176. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。