Clinical Brain MRI Super-Resolution with 2D Slice-Wise Diffusion Model
2025
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号15241 LNCS
页码166-176
发表状态已发表
DOI10.1007/978-3-031-73284-3_17
摘要

Magnetic resonance imaging (MRI) plays a vital role in brain imaging, offering exceptional soft tissue contrast without the use of ionizing radiation, ensuring safe and effective medical diagnosis. In clinic settings, 2D acquisitions are preferred by physicians due to fewer slices, large spacing, and high in-plane resolution, balancing spatial resolution, signal-to-noise ratio (SNR), 0 and acquisition time. However, these MR images may lack through-plane resolution, which may hinder lesion detection, tissue segmentation, accurate volumetric measurements, and cortical reconstruction. Most existing deep learning methods are built with purely synthetic data by collecting only high-resolution images, creating a gap between synthetic data and real-world paired data. To address these issues, we propose a slice-wise framework using a diffusion model for inter-slice super-resolution of brain MR images: 1) Employ a real-world coarse super-resolution model for initial prediction; 2) Use a score-based diffusion model for detailed iterative refinement; 3) Leverage total variation (TV) penalty with a plug-and-play (PnP) optimization module for enhanced consistency. We validate our method on over 450 real paired cases, demonstrating that our method could generate realistic images with satisfactory 3D consistency and significantly reduce over-smooth problems, thereby improving current data quality. This 2D slice-wise diffusion model also provides an effective solution for improving the quality of brain MRI images in real-world scenarios. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

关键词Bioinformatics Brain mapping Deep learning Diffusion tensor imaging Electroencephalography Image segmentation 2-D slice Brain imaging Brain magnetic resonance imaging Diffusion model Plug-and-play Real-world Soft tissue Spatial resolution Superresolution Synthetic data
会议名称15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Marrakesh, Morocco
会议日期October 6, 2024 - October 6, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Key Technologies R&D Program of China[82027808] ; National Natural Science Foundation of China["62131015","U23A20295"]
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001424557900017
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20244517332442
EI主题词Magnetic resonance imaging
EISSN1611-3349
EI分类号101.1 ; 101.7.2 ; 102.1 ; 1101.2.1 ; 1106.3.1 ; 709 Electrical Engineering, General ; 746 Imaging Techniques
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449156
专题信息科学与技术学院_博士生
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
通讯作者Shi, Feng; Shen, Dinggang
作者单位
1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China
2.Department of Research and Development, United Imaging Intelligence Co., Ltd., Shanghai; 200232, China
3.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Wang, Runqi,Cao, Zehong,He, Yichu,et al. Clinical Brain MRI Super-Resolution with 2D Slice-Wise Diffusion Model[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:166-176.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Runqi]的文章
[Cao, Zehong]的文章
[He, Yichu]的文章
百度学术
百度学术中相似的文章
[Wang, Runqi]的文章
[Cao, Zehong]的文章
[He, Yichu]的文章
必应学术
必应学术中相似的文章
[Wang, Runqi]的文章
[Cao, Zehong]的文章
[He, Yichu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。