ShanghaiTech University Knowledge Management System
Structure-Preserving Diffusion Model for Unpaired Medical Image Translation | |
2025 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 15241 LNCS |
页码 | 218-227 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-73284-3_22 |
摘要 | Multi-modality imaging plays a crucial role in clinical diagnosis. Reconstructing missing modality images, such as CT-to-MR, is quite important when only one modality is available. Previous works either fall short in preserving the anatomical structures during translation or require paired data, leaving significant challenges unaddressed in the realm of unpaired medical image translation. This study introduces a novel structure-preserving diffusion model specifically designed for unpaired medical image translation, leveraging edge information to represent common anatomical structures across different modalities. To bridge the domain gap effectively, we further propose a novel Interleaved Sampling Refinement (ISR) mechanism that dynamically alternates the use of edge information. This approach not only generates high-quality images but also preserves structural integrity across modalities. Our experiments conducted on two public datasets have achieved the state-of-the-art performance, demonstrating the advantage of our method on unpaired medical image translation. The code of our implementation is available at GitHub. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. |
关键词 | Computerized tomography Anatomical structure preserving Anatomical structures Clinical diagnosis Diffusion model Edge information Image translation Multi-modality imaging Novel structures Structure-preserving Unpaired image translation |
会议名称 | 15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Marrakesh, Morocco |
会议日期 | October 6, 2024 - October 6, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | NSFC[6230012077] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund Project[YDZX20233100001001] |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001424557900022 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20244517332447 |
EI主题词 | Medical imaging |
EISSN | 1611-3349 |
EI分类号 | 101.1 ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449155 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_崔智铭组 |
通讯作者 | Cui, Zhiming |
作者单位 | 1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China 2.United Imaging Healthcare, Shanghai, China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Wang, Haoshen,Wang, Xiaodong,Cui, Zhiming. Structure-Preserving Diffusion Model for Unpaired Medical Image Translation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:218-227. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。