Structure-Preserving Diffusion Model for Unpaired Medical Image Translation
2025
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号15241 LNCS
页码218-227
发表状态已发表
DOI10.1007/978-3-031-73284-3_22
摘要

Multi-modality imaging plays a crucial role in clinical diagnosis. Reconstructing missing modality images, such as CT-to-MR, is quite important when only one modality is available. Previous works either fall short in preserving the anatomical structures during translation or require paired data, leaving significant challenges unaddressed in the realm of unpaired medical image translation. This study introduces a novel structure-preserving diffusion model specifically designed for unpaired medical image translation, leveraging edge information to represent common anatomical structures across different modalities. To bridge the domain gap effectively, we further propose a novel Interleaved Sampling Refinement (ISR) mechanism that dynamically alternates the use of edge information. This approach not only generates high-quality images but also preserves structural integrity across modalities. Our experiments conducted on two public datasets have achieved the state-of-the-art performance, demonstrating the advantage of our method on unpaired medical image translation. The code of our implementation is available at GitHub. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

关键词Computerized tomography Anatomical structure preserving Anatomical structures Clinical diagnosis Diffusion model Edge information Image translation Multi-modality imaging Novel structures Structure-preserving Unpaired image translation
会议名称15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Marrakesh, Morocco
会议日期October 6, 2024 - October 6, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目NSFC[6230012077] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund Project[YDZX20233100001001]
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001424557900022
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20244517332447
EI主题词Medical imaging
EISSN1611-3349
EI分类号101.1 ; 746 Imaging Techniques
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449155
专题生物医学工程学院
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_崔智铭组
通讯作者Cui, Zhiming
作者单位
1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
2.United Imaging Healthcare, Shanghai, China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Wang, Haoshen,Wang, Xiaodong,Cui, Zhiming. Structure-Preserving Diffusion Model for Unpaired Medical Image Translation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:218-227.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Haoshen]的文章
[Wang, Xiaodong]的文章
[Cui, Zhiming]的文章
百度学术
百度学术中相似的文章
[Wang, Haoshen]的文章
[Wang, Xiaodong]的文章
[Cui, Zhiming]的文章
必应学术
必应学术中相似的文章
[Wang, Haoshen]的文章
[Wang, Xiaodong]的文章
[Cui, Zhiming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。