IRUM: An Image Representation and Unified Learning Method for Breast Cancer Diagnosis from Multi-View Ultrasound Images
2025
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号15241 LNCS
页码22-30
发表状态已发表
DOI10.1007/978-3-031-73284-3_3
摘要Multi-view breast ultrasound imaging has been routinely performed in clinical settings to ensure comprehensive disease evaluation. Recently, artificial intelligence (AI) has been developed to interpret medical images; however, most of the current AI models are restricted to single-view images, resulting in weak representation of breast 3D tissues. Here, we develop an Image Representation and Unified learning Method (IRUM) on a dataset comprising 3800 ultrasound images from 1900 patients with an accuracy of 86.8%. Owing to the design of four distinct learning modules, the proposed IRUM is not only able to predict breast cancer risk using multi-view inputs, but also compatible with single-view input (a commonly encountered situation in clinical practice). We demonstrate that the IRUM achieves superior performance to conventional single-view and multi-view approaches to a certain degree. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
关键词Contrastive Learning Lung cancer Medical imaging Ultrasonic imaging Breast Cancer Breast cancer diagnosis Breast ultrasound imaging Clinical settings Consistency learning Image representations Learning methods Multi-view diagnose Multi-views Ultrasound images
会议名称15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Marrakesh, Morocco
会议日期October 6, 2024 - October 6, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China["62131015","62250710165","U23A20295","2022ZD0209000"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"]
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001424557900003
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20244517332428
EI主题词Image representation
EISSN1611-3349
EI分类号101.1 ; 102.1.1 ; 1101.2 ; 1106.3.1 ; 746 Imaging Techniques ; 753.3 Ultrasonic Applications
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449152
专题生物医学工程学院_博士生
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_钱学骏组
通讯作者Shen, Dinggang
作者单位
1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China
2.Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong
3.Department of Ultrasound, Wenzhou People’s Hospital, Wenzhou; 325000, China
4.Department of Radiology, Yunnan Cancer Hospital, Kunming; 650118, China
5.Shanghai United Imaging Intelligence Co., Ltd., Shanghai; 200230, China
6.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Chen, Haoyuan,Li, Yonghao,Zhang, Jiadong,et al. IRUM: An Image Representation and Unified Learning Method for Breast Cancer Diagnosis from Multi-View Ultrasound Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:22-30.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Haoyuan]的文章
[Li, Yonghao]的文章
[Zhang, Jiadong]的文章
百度学术
百度学术中相似的文章
[Chen, Haoyuan]的文章
[Li, Yonghao]的文章
[Zhang, Jiadong]的文章
必应学术
必应学术中相似的文章
[Chen, Haoyuan]的文章
[Li, Yonghao]的文章
[Zhang, Jiadong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。