ShanghaiTech University Knowledge Management System
IRUM: An Image Representation and Unified Learning Method for Breast Cancer Diagnosis from Multi-View Ultrasound Images | |
2025 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 15241 LNCS |
页码 | 22-30 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-73284-3_3 |
摘要 | Multi-view breast ultrasound imaging has been routinely performed in clinical settings to ensure comprehensive disease evaluation. Recently, artificial intelligence (AI) has been developed to interpret medical images; however, most of the current AI models are restricted to single-view images, resulting in weak representation of breast 3D tissues. Here, we develop an Image Representation and Unified learning Method (IRUM) on a dataset comprising 3800 ultrasound images from 1900 patients with an accuracy of 86.8%. Owing to the design of four distinct learning modules, the proposed IRUM is not only able to predict breast cancer risk using multi-view inputs, but also compatible with single-view input (a commonly encountered situation in clinical practice). We demonstrate that the IRUM achieves superior performance to conventional single-view and multi-view approaches to a certain degree. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. |
关键词 | Contrastive Learning Lung cancer Medical imaging Ultrasonic imaging Breast Cancer Breast cancer diagnosis Breast ultrasound imaging Clinical settings Consistency learning Image representations Learning methods Multi-view diagnose Multi-views Ultrasound images |
会议名称 | 15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Marrakesh, Morocco |
会议日期 | October 6, 2024 - October 6, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62131015","62250710165","U23A20295","2022ZD0209000"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"] |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001424557900003 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20244517332428 |
EI主题词 | Image representation |
EISSN | 1611-3349 |
EI分类号 | 101.1 ; 102.1.1 ; 1101.2 ; 1106.3.1 ; 746 Imaging Techniques ; 753.3 Ultrasonic Applications |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449152 |
专题 | 生物医学工程学院_博士生 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_钱学骏组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China 2.Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong 3.Department of Ultrasound, Wenzhou People’s Hospital, Wenzhou; 325000, China 4.Department of Radiology, Yunnan Cancer Hospital, Kunming; 650118, China 5.Shanghai United Imaging Intelligence Co., Ltd., Shanghai; 200230, China 6.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Chen, Haoyuan,Li, Yonghao,Zhang, Jiadong,et al. IRUM: An Image Representation and Unified Learning Method for Breast Cancer Diagnosis from Multi-View Ultrasound Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2025:22-30. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。