| |||||||
ShanghaiTech University Knowledge Management System
Over-the-Air Hierarchical Personalized Federated Learning | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (IF:6.1[JCR-2023],6.5[5-Year]) |
ISSN | 1939-9359 |
EISSN | 1939-9359 |
卷号 | PP期号:99 |
发表状态 | 已发表 |
DOI | 10.1109/TVT.2024.3499349 |
摘要 | Data heterogeneity and communication bottleneck are two critical factors that limit the performance of federated learning (FL) over wireless networks. To address these challenges, this paper introduces a hierarchical personalized federated learning (HPFL) framework, which employs a three-tier network architecture to enable the simultaneous learning of a global model and multiple personalized local models. Meanwhile, over-the-air computation (AirComp) is leveraged to support communication-efficient device-to-edge and edge-to-cloud model aggregations. To provide useful guidance for enhancing learning performance, we derive the convergence bound of the proposed AirComp-assisted HPFL, taking into account the interference among different clusters as well as data heterogeneity across different devices. To minimize the impact of accumulated transmission distortion on learning performance, we formulate an optimization problem involving the beamforming design at both cloud and edge servers, followed by developing a successive convex approximation-based algorithm at the cloud server and an interference-aware algorithm at each edge server to perform the receive beamforming design. Simulation results demonstrate that our proposed framework outperforms other FL frameworks and transceiver design algorithms in terms of test accuracy. |
关键词 | Convex optimization Optical transceivers Transfer learning Cloud servers Data heterogeneity Data-communication Edge server Hierarchical architectures Interference management Learning frameworks Learning performance Over the airs Over-the-air computation |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20244717413609 |
EI主题词 | Federated learning |
EI分类号 | 1101.2 ; 1201.7 ; 741.3 Optical Devices and Systems |
原始文献类型 | Article in Press |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449107 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China 3.Software Engineering Institute, the Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China 4.School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Fangtong Zhou,Zhibin Wang,Hangguan Shan,et al. Over-the-Air Hierarchical Personalized Federated Learning[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2024,PP(99). |
APA | Fangtong Zhou.,Zhibin Wang.,Hangguan Shan.,Liantao Wu.,Xiaohua Tian.,...&Yong Zhou.(2024).Over-the-Air Hierarchical Personalized Federated Learning.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,PP(99). |
MLA | Fangtong Zhou,et al."Over-the-Air Hierarchical Personalized Federated Learning".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY PP.99(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。