消息
×
loading..
Over-the-Air Hierarchical Personalized Federated Learning
2024
发表期刊IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (IF:6.1[JCR-2023],6.5[5-Year])
ISSN1939-9359
EISSN1939-9359
卷号PP期号:99
发表状态已发表
DOI10.1109/TVT.2024.3499349
摘要

Data heterogeneity and communication bottleneck are two critical factors that limit the performance of federated learning (FL) over wireless networks. To address these challenges, this paper introduces a hierarchical personalized federated learning (HPFL) framework, which employs a three-tier network architecture to enable the simultaneous learning of a global model and multiple personalized local models. Meanwhile, over-the-air computation (AirComp) is leveraged to support communication-efficient device-to-edge and edge-to-cloud model aggregations. To provide useful guidance for enhancing learning performance, we derive the convergence bound of the proposed AirComp-assisted HPFL, taking into account the interference among different clusters as well as data heterogeneity across different devices. To minimize the impact of accumulated transmission distortion on learning performance, we formulate an optimization problem involving the beamforming design at both cloud and edge servers, followed by developing a successive convex approximation-based algorithm at the cloud server and an interference-aware algorithm at each edge server to perform the receive beamforming design. Simulation results demonstrate that our proposed framework outperforms other FL frameworks and transceiver design algorithms in terms of test accuracy.

关键词Convex optimization Optical transceivers Transfer learning Cloud servers Data heterogeneity Data-communication Edge server Hierarchical architectures Interference management Learning frameworks Learning performance Over the airs Over-the-air computation
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20244717413609
EI主题词Federated learning
EI分类号1101.2 ; 1201.7 ; 741.3 Optical Devices and Systems
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449107
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
3.Software Engineering Institute, the Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
4.School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Fangtong Zhou,Zhibin Wang,Hangguan Shan,et al. Over-the-Air Hierarchical Personalized Federated Learning[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2024,PP(99).
APA Fangtong Zhou.,Zhibin Wang.,Hangguan Shan.,Liantao Wu.,Xiaohua Tian.,...&Yong Zhou.(2024).Over-the-Air Hierarchical Personalized Federated Learning.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,PP(99).
MLA Fangtong Zhou,et al."Over-the-Air Hierarchical Personalized Federated Learning".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY PP.99(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fangtong Zhou]的文章
[Zhibin Wang]的文章
[Hangguan Shan]的文章
百度学术
百度学术中相似的文章
[Fangtong Zhou]的文章
[Zhibin Wang]的文章
[Hangguan Shan]的文章
必应学术
必应学术中相似的文章
[Fangtong Zhou]的文章
[Zhibin Wang]的文章
[Hangguan Shan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。