Cascade contour-enhanced panoptic segmentation for robotic vision perception
2024-10-21
发表期刊FRONTIERS IN NEUROROBOTICS (IF:2.6[JCR-2023],3.1[5-Year])
ISSN1662-5218
EISSN1662-5218
卷号18
发表状态已发表
DOI10.3389/fnbot.2024.1489021
摘要

Panoptic segmentation plays a crucial role in enabling robots to comprehend their surroundings, providing fine-grained scene understanding information for robots' intelligent tasks. Although existing methods have made some progress, they are prone to fail in areas with weak textures, small objects, etc. Inspired by biological vision research, we propose a cascaded contour-enhanced panoptic segmentation network called CCPSNet, attempting to enhance the discriminability of instances through structural knowledge. To acquire the scene structure, a cascade contour detection stream is designed, which extracts comprehensive scene contours using channel regulation structural perception module and coarse-to-fine cascade strategy. Furthermore, the contour-guided multi-scale feature enhancement stream is developed to boost the discrimination ability for small objects and weak textures. The stream integrates contour information and multi-scale context features through structural-aware feature modulation module and inverse aggregation technique. Experimental results show that our method improves accuracy on the Cityscapes (61.2 PQ) and COCO (43.5 PQ) datasets while also demonstrating robustness in challenging simulated real-world complex scenarios faced by robots, such as dirty cameras and rainy conditions. The proposed network promises to help the robot perceive the real scene. In future work, an unsupervised training strategy for the network could be explored to reduce the training cost.

关键词robot vision panoptic segmentation panoptic contour detection structure perception cascade feature enhancement visual pathway
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Science and Technology Major Project from Minister of Science and Technology, China[2018AAA0103100] ; Natural Science Foundation of Shanghai[23ZR1474200] ; Shanghai Municipal Science and Technology Major Project[2018SHZDZX01] ; Youth Innovation Promotion Association, Chinese Academy of Sciences[2021233] ; Shanghai Academic Research Leader[22XD1424500]
WOS研究方向Computer Science ; Robotics ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Robotics ; Neurosciences
WOS记录号WOS:001348787800001
出版者FRONTIERS MEDIA SA
EI入藏号20244617357765
EI主题词Robot vision
EI分类号101.6.1 ; 1106.3.1 ; 1106.8 ; 731.6 Robot Applications
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/446046
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_张晓林组
信息科学与技术学院_硕士生
通讯作者Zhu, Dongchen
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xu, Yue,Liu, Runze,Zhu, Dongchen,et al. Cascade contour-enhanced panoptic segmentation for robotic vision perception[J]. FRONTIERS IN NEUROROBOTICS,2024,18.
APA Xu, Yue,Liu, Runze,Zhu, Dongchen,Chen, Lili,Zhang, Xiaolin,&Li, Jiamao.(2024).Cascade contour-enhanced panoptic segmentation for robotic vision perception.FRONTIERS IN NEUROROBOTICS,18.
MLA Xu, Yue,et al."Cascade contour-enhanced panoptic segmentation for robotic vision perception".FRONTIERS IN NEUROROBOTICS 18(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Yue]的文章
[Liu, Runze]的文章
[Zhu, Dongchen]的文章
百度学术
百度学术中相似的文章
[Xu, Yue]的文章
[Liu, Runze]的文章
[Zhu, Dongchen]的文章
必应学术
必应学术中相似的文章
[Xu, Yue]的文章
[Liu, Runze]的文章
[Zhu, Dongchen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。