Machine learning prediction of mechanical properties of bamboo by hemicelluloses removal
2024-12-15
发表期刊INDUSTRIAL CROPS AND PRODUCTS (IF:5.6[JCR-2023],5.7[5-Year])
ISSN0926-6690
EISSN1872-633X
卷号222
发表状态已发表
DOI10.1016/j.indcrop.2024.119934
摘要

The use of bamboo as a sustainable material is becoming increasingly prevalent; however, the optimisation of its mechanical properties remains a significant challenge. In this study, different concentrations of sodium hydroxide (NaOH) were used to remove the hemicellulose of bamboo and the effect of mechanical properties such as modulus of elasticity, flexural strength and elastic limit were evaluated. A total of 90 samples of data were collected and five machine learning algorithms including Principal Component Regression (PCR), Partial Least Squares Regression (PLSR), Ridge Regression (RR), Lasso Regression (LR) and Elastic Network Regression (ENR) were employed to build predictive models based on these properties. The models were trained and tested using 5fold cross validation. The results showed that the mechanical properties of elastic modulus and elastic limit of bamboo medium were enhanced to 9.63 GPa and 66.44 MPa treated by 10 % NaOH, while the flexural strength of bamboo medium was up to 147.29 GPa with 5% NaOH. The Ridge Regression algorithm was the best compared to other four algorithms. This methodological approach is not only offers an efficient way to optimize the mechanical properties of bamboo, but also enhances sustainable practices in the environmental sector.

关键词Sustainable material Hemicellulose Mechanical properties Sodium hydroxide Machine learning algorithm
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key Research & Develop-ment Program of China[2022YFD2200901] ; National Natural Science Foundation of China[32371802]
WOS研究方向Agriculture
WOS类目Agricultural Engineering ; Agronomy
WOS记录号WOS:001350469900001
出版者ELSEVIER
EI入藏号20244517308588
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/446028
专题物质科学与技术学院
物质科学与技术学院_PI研究组_凌盛杰组
物质科学与技术学院_PI研究组_刘一凡组
通讯作者Ma, Xinxin; Guan, Ying
作者单位
1.Anhui Agr Univ, Sch Mat & Chem, Hefei 230036, Peoples R China
2.Int Ctr Bamboo & Rattan, Dept Biomat, 8 Futong Eastern St, Beijing 100102, Peoples R China
3.ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Du, Chunhao,Li, Jianan,Ruan, Mengya,et al. Machine learning prediction of mechanical properties of bamboo by hemicelluloses removal[J]. INDUSTRIAL CROPS AND PRODUCTS,2024,222.
APA Du, Chunhao.,Li, Jianan.,Ruan, Mengya.,Gao, Hui.,Zhou, Liang.,...&Guan, Ying.(2024).Machine learning prediction of mechanical properties of bamboo by hemicelluloses removal.INDUSTRIAL CROPS AND PRODUCTS,222.
MLA Du, Chunhao,et al."Machine learning prediction of mechanical properties of bamboo by hemicelluloses removal".INDUSTRIAL CROPS AND PRODUCTS 222(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Du, Chunhao]的文章
[Li, Jianan]的文章
[Ruan, Mengya]的文章
百度学术
百度学术中相似的文章
[Du, Chunhao]的文章
[Li, Jianan]的文章
[Ruan, Mengya]的文章
必应学术
必应学术中相似的文章
[Du, Chunhao]的文章
[Li, Jianan]的文章
[Ruan, Mengya]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。