消息
×
loading..
Developing General Reactive Element-Based Machine Learning Potentials as the Main Computational Engine for Heterogeneous Catalysis
2024-10-14
状态已发表
摘要Machine learning potentials (MLPs) have emerged as a promising technique to significantly enhance efficiency by replacing computationally expensive quantum mechanical calculations. However, developing truly universal MLPs remains challenging, as the consensus is that MLPs can only be used for similar structures that they have been trained on, while the vast and diverse chemical space is difficult to fully sample using the common system-dependent sampling methods. Here, our approach leverages a unique random exploration via imaginary chemicals optimization (REICO) strategy, which enables unbiased exploration of chemical space by focusing on atomic interactions. The resulting EMLP is inherently general and reactive, capable of accurately predicting elementary reactions without explicit structural or reaction pathway inputs. Benchmarked across various representative calculations of heterogeneous catalysis, our EMLP achieves quantitative agreement with density functional theory (DFT) calculations. This demonstrates the potential of EMLP as a powerful, general, and user-friendly tool for modeling complex chemical systems, paving the way to replace DFT calculations for large and intricate systems. Our approach is also applicable to broader fields such as materials science and molecular biology, representing a paradigm shift in MLPs-related research.
关键词Machine learning potential heterogeneous catalysis reactions
语种英语
DOI10.26434/chemrxiv-2024-r8l6j
相关网址查看原文
出处chemRxiv
收录类别PPRN.PPRN
WOS记录号PPRN:109935989
WOS类目Chemistry, Multidisciplinary
资助项目National Natural Science Foundation of China (NSFC)[92045303] ; National Natural Science Foundation of China (NKRDPC)[2021YFA1500700]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/445530
专题物质科学与技术学院
物质科学与技术学院_PI研究组_胡培君组
通讯作者Xie, Wenbo; Hu, Peijun
作者单位
1.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
2.East China Univ Sci & Technol, Res Inst Ind Catalysis, Ctr Computat Chem, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
3.Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210023, Peoples R China
4.Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT9 5AG, North Ireland
推荐引用方式
GB/T 7714
Yang, Changxi,Wu, Chenyu,Xie, Wenbo,et al. Developing General Reactive Element-Based Machine Learning Potentials as the Main Computational Engine for Heterogeneous Catalysis. 2024.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Changxi]的文章
[Wu, Chenyu]的文章
[Xie, Wenbo]的文章
百度学术
百度学术中相似的文章
[Yang, Changxi]的文章
[Wu, Chenyu]的文章
[Xie, Wenbo]的文章
必应学术
必应学术中相似的文章
[Yang, Changxi]的文章
[Wu, Chenyu]的文章
[Xie, Wenbo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.26434@chemrxiv-2024-r8l6j.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。