ShanghaiTech University Knowledge Management System
Task-Driven Tailored Covalent Organic Framework for Dynamic Capture of Trace Radioactive CH3 131I under High-Flow Rate Conditions | |
2024-10-01 | |
发表期刊 | ACS CENTRAL SCIENCE (IF:12.7[JCR-2023],15.8[5-Year]) |
ISSN | 2374-7943 |
EISSN | 2374-7951 |
发表状态 | 已发表 |
DOI | 10.1021/acscentsci.4c01318 |
摘要 | The removal of radioactive gaseous iodine is crucial for sustainable nuclear energy development, safe spent fuel management, and secure disposal of radioactive waste and radioactive medical waste. However, the efficient capture of gaseous iodine, particularly methyl iodide, under conditions of low concentration and high-flow rate that are representative of real-world scenarios remains underexplored. Herein, we adopted a "theory-first" strategy to design adsorbents with a superior affinity for methyl iodide. The rigorous theoretical calculations for both physisorption and chemisorption have guided us to rationally design a piperazine-based covalent organic framework material (Pip-COF, Pip = piperazine). The pioneering hot-testing under dynamic conditions, featuring low concentrations of 5 ppm radioactive CH3 131I and a high-flow rate of 600 mL/min, demonstrated Pip-COF's exceptional capture performance. Pip-COF exhibits saturated capacities of 39 mg/g at 75 degrees C and 78 mg/g at 25 degrees C, significantly outperforming the previously reported best COF (COF-TAPT, 6 mg/g at 25 degrees C) in this scenario. The gradual process of methylation and the identification of specific high-affinity sites were elucidated by time-resolved FT-IR spectroscopy and density functional theory (DFT) analysis, consistent with the design philosophy. This study exemplifies rational material design in facilitating the separation of trace pollutants in challenging environments. |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Multidisciplinary |
WOS记录号 | WOS:001343815600001 |
出版者 | AMER CHEMICAL SOC |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/445506 |
专题 | 物质科学与技术学院 物质科学与技术学院_硕士生 物质科学与技术学院_PI研究组_曹克诚组 |
通讯作者 | Chen, Long; Zhao, Chao; Wang, Shuao |
作者单位 | 1.Soochow Univ, Collaborat Innovat Ctr Radiol Med, Sch Radiat Med & Protect, State Key Lab Radiat Med & Protect,Jiangsu Higher, Suzhou 215123, Peoples R China 2.Shanghai Inst Measurement & Testing Technol, Shanghai 201203, Peoples R China 3.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 4.ShanghaiTech Univ, Shanghai Key Lab High resolut Electron Microscopy, Shanghai 201210, Peoples R China |
推荐引用方式 GB/T 7714 | He, Linwei,Li, Baoyu,Ma, Zhonglin,et al. Task-Driven Tailored Covalent Organic Framework for Dynamic Capture of Trace Radioactive CH3 131I under High-Flow Rate Conditions[J]. ACS CENTRAL SCIENCE,2024. |
APA | He, Linwei.,Li, Baoyu.,Ma, Zhonglin.,Zhao, Fuqiang.,Zhang, Mingxing.,...&Wang, Shuao.(2024).Task-Driven Tailored Covalent Organic Framework for Dynamic Capture of Trace Radioactive CH3 131I under High-Flow Rate Conditions.ACS CENTRAL SCIENCE. |
MLA | He, Linwei,et al."Task-Driven Tailored Covalent Organic Framework for Dynamic Capture of Trace Radioactive CH3 131I under High-Flow Rate Conditions".ACS CENTRAL SCIENCE (2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。