ShanghaiTech University Knowledge Management System
Achieving Higher Critical Current Density in LGPS-Based Lithium Metal Batteries via a Synergistic Interlayer for Physical Inhibition and Chemical Scavenging of Lithium Dendrites | |
2024 | |
发表期刊 | ACS APPLIED MATERIALS AND INTERFACES (IF:8.3[JCR-2023],8.7[5-Year]) |
ISSN | 1944-8244 |
EISSN | 1944-8252 |
卷号 | 16期号:44页码:60376-60386 |
发表状态 | 已发表 |
DOI | 10.1021/acsami.4c14887 |
摘要 | Li10.35Ge1.35P1.65S12 (LGPS) electrolyte has garnered attention due to its high ionic conductivity and processability. However, its strong incompatibility with lithium metal hinders its practical application. Conventional interlayer strategy isolates Li from LGPS, avoiding the detrimental side reactions, but lithium dendrite penetration is still a problem. To address the aforementioned challenges, we develop a PVDF-HFP-supported PDOL-based interlayer (PDOL/PVDF-HFP), which stabilizes the LGPS/Li interface by synergistically physically inhibiting and chemically scavenging lithium dendrites. The multifunctional feature of the interlayer comes from the use of a bifunctional initiator, InCl3. On the one hand, InCl3 induces the polymerization of DOL, forming a physical separator and protecting lithium from LGPS; on the other hand, in situ reactions between In3+/Cl- and Li form a LiCl/LiF/LiIn hybrid SEI, homogenizing the surface Li+ flux and suppressing lithium dendrite formation and penetration. In addition, an unexpected dynamic microdendrite scavenging is realized by virtue of the side reactions of LGPS/Li, which converts the undesirable reaction to be an advantage in our design. Benefiting from the comprehensive advantages of such design, the constructed sulfide-based solid-state batteries achieve a super low interfacial impedance of 5.1 Ω, a high critical current density (CCD) value over 5 mA/cm2, and a super long cycling stability over 8000 h. Our synergistic interlayer strategy would open an effective avenue for solving interfacial challenges for practical sulfide-based solid-state batteries. © 2024 American Chemical Society. |
关键词 | Agglomeration Germanium compounds Hydrolysis Lithium batteries Lithium sulfur batteries Phosphorus compounds Photodissociation Photolysis Selenium compounds Sulfur compounds Artificial solid electrolyte interphase Dendrite scavenging High critical current densities Interfacial modification Lithium dendrite Lithium metals Side reactions Solid electrolyte interphase Solid state batteries Sulfide-based solid electrolytes |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[2022YFB3807700] ; National Key R&D Program of China[U20A20248] ; National Natural Science Foundation of China[23DZ1200800] |
WOS研究方向 | Science & Technology - Other Topics ; Materials Science |
WOS类目 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:001340358300001 |
出版者 | American Chemical Society |
EI入藏号 | 20244317269131 |
EI主题词 | Solid-State Batteries |
EI分类号 | 202.9.3 ; 702.1.1 Primary Batteries ; 702.1.2 Secondary Batteries ; 802.2 Chemical Reactions ; 802.3 Chemical Operations ; 804.1 Organic Compounds ; 804.2 Inorganic Compounds |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/442516 |
专题 | 物质科学与技术学院 物质科学与技术学院_特聘教授组_温兆银组 物质科学与技术学院_博士生 |
通讯作者 | Lu, Yan; Wen, Zhaoyin |
作者单位 | 1.The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai; 200050, China 2.CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai; 200050, China 3.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing; 100049, China 4.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China 5.Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou; 310012, China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Jie,Jin, Jun,Sheng, Ouwei,et al. Achieving Higher Critical Current Density in LGPS-Based Lithium Metal Batteries via a Synergistic Interlayer for Physical Inhibition and Chemical Scavenging of Lithium Dendrites[J]. ACS APPLIED MATERIALS AND INTERFACES,2024,16(44):60376-60386. |
APA | Zhang, Jie,Jin, Jun,Sheng, Ouwei,Chen, Ya,Lu, Yan,&Wen, Zhaoyin.(2024).Achieving Higher Critical Current Density in LGPS-Based Lithium Metal Batteries via a Synergistic Interlayer for Physical Inhibition and Chemical Scavenging of Lithium Dendrites.ACS APPLIED MATERIALS AND INTERFACES,16(44),60376-60386. |
MLA | Zhang, Jie,et al."Achieving Higher Critical Current Density in LGPS-Based Lithium Metal Batteries via a Synergistic Interlayer for Physical Inhibition and Chemical Scavenging of Lithium Dendrites".ACS APPLIED MATERIALS AND INTERFACES 16.44(2024):60376-60386. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。