消息
×
loading..
Over-the-Air Computation Empowered Vertically Split Inference
2024
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1558-2248
EISSN1558-2248
卷号PP期号:99
发表状态已发表
DOI10.1109/TWC.2024.3485678
摘要

To tackle the issue of heterogeneous input raw data samples obtained by different devices and enhance the feature extraction capability of edge devices, we propose a vertically split neural network based edge-device collaborative artificial intelligence (AI) inference framework. The local results calculated by various light-size sub-networks at edge devices are transmitted and aggregated at the server for the downstream inference task. Nevertheless, the transmission of such high-dimensional local results involves severe communication overhead. To resolve this issue, the technique of over-the-air computation (AirComp) is adopted to enable low-latency aggregation. The same entry of all devices’ local results is transmitted over a same wireless resource block and aggregated via the waveform superposition property. Furthermore, to simultaneously support the aggregation of all dimensions of the local results, we consider a broadband channel and leverage orthogonal frequency division multiplexing (OFDM) to divide the system bandwidth into multiple subcarriers which are then assigned for different dimensions. Consequently, an extra degree of freedom is introduced to design the aggregation of all dimensions. We then propose a scheme of joint subcarrier allocation, power allocation, and receiver beamforming to minimize the aggregation distortion and enhance inference performance. Extensive experiments are conducted to verify the superiority of the proposed design over benchmarks.

关键词Beamforming Benchmarking Data sample Down-stream Extraction capability Features extraction Network-based Neural-networks Over the airs Over-the-air computation Split inference Subnetworks
URL查看原文
收录类别SCI ; EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20244717384689
EI主题词Orthogonal frequency division multiplexing
EI分类号716 Telecommunication ; Radar, Radio and Television ; 716.1 Information Theory and Signal Processing ; 913.3 Quality Assurance and Control
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/442491
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_PI研究组_文鼎柱组
通讯作者Dingzhu Wen; Ting Wang
作者单位
1.MoE Engineering Research Center of Software/Hardware Co-design Technology and Application, the Shanghai Key Lab. of Trustworthy Computing, East China Normal University, Shanghai, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
3.Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Peng Yang,Dingzhu Wen,Qunsong Zeng,et al. Over-the-Air Computation Empowered Vertically Split Inference[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,PP(99).
APA Peng Yang.,Dingzhu Wen.,Qunsong Zeng.,Yong Zhou.,Ting Wang.,...&Yuanming Shi.(2024).Over-the-Air Computation Empowered Vertically Split Inference.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99).
MLA Peng Yang,et al."Over-the-Air Computation Empowered Vertically Split Inference".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Peng Yang]的文章
[Dingzhu Wen]的文章
[Qunsong Zeng]的文章
百度学术
百度学术中相似的文章
[Peng Yang]的文章
[Dingzhu Wen]的文章
[Qunsong Zeng]的文章
必应学术
必应学术中相似的文章
[Peng Yang]的文章
[Dingzhu Wen]的文章
[Qunsong Zeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。